Skip to content

Commit

Permalink
docs: Add batch inference jobs doc (#4816)
Browse files Browse the repository at this point in the history
* Add batch inference jobs doc

Signed-off-by: Sherlock113 <[email protected]>

* ci: auto fixes from pre-commit.ci

For more information, see https://pre-commit.ci

---------

Signed-off-by: Sherlock113 <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
Sherlock113 and pre-commit-ci[bot] authored Jun 20, 2024
1 parent 6d44055 commit 36654fd
Show file tree
Hide file tree
Showing 2 changed files with 157 additions and 0 deletions.
155 changes: 155 additions & 0 deletions docs/source/bentocloud/how-tos/batch-inference-jobs.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
====================
Batch inference jobs
====================

Some AI-powered tasks are best suited for batch inference, such as embedding generation for RAG systems, periodic updates to recommendation systems, or bulk image processing for feature extraction.

Using BentoML and BentoCloud, you can efficiently manage these batch inference jobs with several key advantages:

- **On-demand Deployment**: Deploy your model only when needed and terminate the Deployment after the job completes, ensuring you pay only for the resources you use. You can run batch inference jobs once or on a recurring basis.
- **Automatic scaling**: Scale your resources automatically based on the traffic demands for your job.
- **Dedicated hardware for inference**: Run model inference on dedicated GPUs, ensuring that the inference tasks do not interfere with batch processing.

This document explains how to run batch inference jobs with BentoML and BentoCloud.

Create jobs
-----------

The following example demonstrates the full lifecycle of job execution.

Step 1: Prepare a BentoML project
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Make sure you have an existing BentoML project or a Bento. The example below is a typical BentoML Service setup for a RAG system, where endpoints ``ingest_pdf_batch`` and ``ingest_text_batch`` are used for batch ingestion of files. They can compute embeddings for documents and write them to a vector database for indexing. Unlike regular Services that might require constant availability, these endpoints can be activated on-demand, making them ideal for batch inference jobs, as resources are only consumed during active job execution.

.. code-block:: python
...
@bentoml.service(
resources={
"gpu": 1,
},
traffic={
"timeout": 30,
"concurrency": 5,
"external_queue": True,
}
)
class RAGService:
# Initialization setup
...
@bentoml.api
def ingest_pdf_batch(self, pdf: Annotated[Path, bentoml.validators.ContentType("application/pdf")]) -> str:
import pypdf
reader = pypdf.PdfReader(pdf)
texts = []
for page in reader.pages:
text = page.extract_text()
texts.append(text)
all_text = "".join(texts)
doc = Document(text=all_text)
# Insert document into vector index and persist to storage
if self.index is None:
self.index = VectorStoreIndex.from_documents(
[doc], storage_context=self.storage_context
)
else:
self.index.insert(doc)
self.index.storage_context.persist()
return "Successfully Loaded Document"
@bentoml.api
def ingest_text_batch(self, txt: Annotated[Path, bentoml.validators.ContentType("text/plain")]) -> str:
with open(txt) as f:
text = f.read()
doc = Document(text=text)
# Insert document into vector index and persist to storage
if self.index is None:
self.index = VectorStoreIndex.from_documents(
[doc], storage_context=self.storage_context
)
else:
self.index.insert(doc)
self.index.storage_context.persist()
return "Successfully Loaded Document"
@bentoml.api
def query(self, query: str) -> str:
# Implementation code for query handling
...
You can find the full example code in the `rag-tutorials <https://github.com/bentoml/rag-tutorials>`_ repository.

Step 2: Create a Deployment
^^^^^^^^^^^^^^^^^^^^^^^^^^^

To deploy this BentoML project as a batch job, create a script to start the Deployment with specific :doc:`configurations </bentocloud/how-tos/configure-deployments>`.

.. code-block:: python
import bentoml
# Define the path to your BentoML project or the Bento package
BENTO_PATH = "./path_to_your_project"
DEPLOYMENT_NAME = "my_batch_job"
# Create a Deployment
deployment = bentoml.deployment.create(
bento=BENTO_PATH,
name=DEPLOYMENT_NAME,
scaling_min=1,
scaling_max=3
)
# Optionally, wait for the Deployment to become ready
deployment.wait_until_ready(timeout=3600)
Step 3: Run inference against the Deployment
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Once your Deployment is active, you can interact with it by creating a client that calls its endpoints. Below is a script that uses the client to perform a file ingestion task.

.. code-block:: python
import bentoml
from pathlib import Path
deployment = bentoml.deployment.get(name=DEPLOYMENT_NAME)
# Get synchronous HTTP client for the Deployment
client = deployment.get_client()
# Call the available endpoints to ingest files
result = client.ingest_text_batch(txt=Path("file_to_ingest.txt"))
Step 4: Clean up
^^^^^^^^^^^^^^^^

After completing the job, it's important to terminate the Deployment to conserve resources.

.. code-block:: python
import bentoml
# Clean-up: terminate the Deployment after job completion
bentoml.deployment.terminate(name=DEPLOYMENT_NAME)
# Optionally check and print the final status
final_status = bentoml.deployment.get(name=DEPLOYMENT_NAME).get_status()
print("Final status:", final_status.to_dict())
Schedule jobs
-------------

To automate and schedule your batch inference tasks, you can utilize a variety of job scheduling tools that best fit your operational environment and requirements. Here are some commonly used schedulers:

- `Cron <https://man7.org/linux/man-pages/man5/crontab.5.html>`_
- `Apache Airflow <https://airflow.apache.org/>`_
- `Kubernetes CronJobs <https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/>`_
2 changes: 2 additions & 0 deletions docs/source/bentocloud/how-tos/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@ They are recipes, directions to achieve a specific end result, and are wholly **
* :doc:`manage-access-token`
* :doc:`manage-secrets`
* :doc:`manage-users`
* :doc:`batch-inference-jobs`
* :doc:`byoc`

.. toctree::
Expand All @@ -27,4 +28,5 @@ They are recipes, directions to achieve a specific end result, and are wholly **
manage-access-token
manage-secrets
manage-users
batch-inference-jobs
byoc

0 comments on commit 36654fd

Please sign in to comment.