Ready to use Machine Learning Python Scripts.
First you need to install the required python packages.
pip install -r requirements.txt
Data Loading
$ python load_data.py -h
usage: load_data.py [-h] -u URL -p PATH
optional arguments:
-h, --help show this help message and exit
-u URL, --url URL url of data file.
-p PATH, --path PATH path to save the file.
Data Processessing
$ python process_data.py -h
usage: process_data.py [-h] -i INPUT_DATA -o OUTPUT_DATA
optional arguments:
-h, --help show this help message and exit
-i INPUT_DATA, --input_data INPUT_DATA
input data file.
-o OUTPUT_DATA, --output_data OUTPUT_DATA
output preprocessed data.
Data Preparation
$ python prepare_data.py -h
usage: prepare_data.py [-h] -i INPUT_DATA -p PATH
optional arguments:
-h, --help show this help message and exit
-i INPUT_DATA, --input_data INPUT_DATA
input data file.
-p PATH, --path PATH path for saving saving train and test data.
Model Training
$ python train.py -h
usage: train.py [-h] -i INPUT_DATA -m MODEL_PATH
optional arguments:
-h, --help show this help message and exit
-i INPUT_DATA, --input_data INPUT_DATA
input data file.
-m MODEL_PATH, --model_path MODEL_PATH
path for saving trained model.
Model Scoring
$ python predict.py -h
usage: predict.py [-h] -f FEATURES -m MODEL_PATH
optional arguments:
-h, --help show this help message and exit
-f FEATURES, --features FEATURES
list of feeatures delimited by ',' .
-m MODEL_PATH, --model_path MODEL_PATH
path for loading the model.
Model Evaluation
$ python evaluate.py -h
usage: evaluate.py [-h] -i INPUT_DATA -m MODEL_PATH
optional arguments:
-h, --help show this help message and exit
-i INPUT_DATA, --input_data INPUT_DATA
input data file.
-m MODEL_PATH, --model_path MODEL_PATH
path for loading the model.
Load data file
$ python load_data.py -u http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv -p data/raw
#INFO: Data is succefully loaded!
Process data
$ python process_data.py -i data/raw/winequality-red.csv -o data/processed/winequality-red.csv
#INFO: Data is succefully processed!
Prepare data
$ python prepare_data.py -i data/processed/winequality-red.csv -p data/prepared/
#INFO: Data is succefully prepared!
Train the ML model
$ python train.py -i data/prepared/train_winequality-red.csv -m models/elastic_net.pkl
#INFO: Model is succefully trained!
Score the model on a new instance of data
$ python predict.py -f "7.4,0.66,0.0,1.8,0.075,13.0,40.0,0.9978,3.51,0.56,9.4" -m models/elastic_net.pkl
the predicted value is : 5.613313110911338
Evaluate the model
$ python evaluate.py -i data/prepared/test_winequality-red.csv -m models/elastic_net.pkl
#INFO: RMSE: 0.7560270879287759
#INFO: MAE: 0.5986176396638518
#INFO: R2: 0.12714137617914456
#INFO: Model is succefully evaluated!