.
├── common
├── deep_sort
├── eval_yolo.py
├── LICENSE
├── Makefile
├── plugins
├── __pycache__
├── pytrt.cpp
├── pytrt.pxd
├── pytrt.pyx
├── README.md
├── result_3.avi
├── run_yolo.sh
├── setup.py
├── trtNet.cpp
├── trtNet.h
├── trt_yolo.py
├── trt_yolo_with_screen.py
├── utils
└── yolo
The deep_sort file contains sort&deep_sort realization.
The plugins contains files about yolo net.
The utils contains files for visualization, preprocessing,etc.
The yolo is the most important one, it explains how to convert darknet weight to tensorRT engin.
bash install_protobuf-3.8.0.sh
Install pycuda
pip install pycuda==2019.1.1
Install onnx==1.4.1(确保是这个版本,不然会出错)
sudo pip3 install onnx==1.4.1
cd ${HOME}/project/tensorrt_demos/plugins
make
cd ${HOME}/project/tensorrt_demos/yolo
bash darknet2onnx.sh
bash onnx2trt.sh
python3 trt_yolo.py
Run on video and now we can switch between kalman filter mode to smooth the results.
python3 trt_yolo_with_screen.py --video /home/zq/Videos/20201022.flv -m yolov3-416