Skip to content

bagari/meta

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GitHub release (latest by date) install with bioconda Platforms Downloads License

Medial Tractography Analysis (MeTA)

workflow

MeTA is a workflow implemented to minimize microstructural heterogeneity in diffusion MRI (dMRI) metrics by extracting and parcellating the core volume along the bundle length in the voxel-space directly while effectively preserving bundle shape and efficiently capturing the regional variation within and along white matter (WM) bundles.

Contact: Iyad Ba Gari [email protected]

If you use MeTA code, please cite the following publication:

Installation

There are two options to use the package: via Conda or Docker/Singularity.

Conda Installation

Create an environment with Python version >=3.9 and <3.12. For example:

conda config --add channels bioconda
conda create -n meta python==3.10
conda install bioconda::meta-neuro

NOTE: Use meta --help to see the package options.

Docker/Singularity Installation

To pull the Singularity image:

singularity pull docker://quay.io/biocontainers/meta-neuro:1.0.0--py310haf7471d_0
singularity pull docker://quay.io/biocontainers/meta-neuro:1.0.0--py311h1752f0f_0
singularity pull docker://quay.io/biocontainers/meta-neuro:1.0.0--py39hc022aa2_0

To execute the package with Singularity:

singularity exec meta-neuro_1.0.0--py310haf7471d_0.sif meta --help

How to use the package:

  • Convert streamlines in TRK format to a binary image:
meta_bundle_density --bundle CST.trk --reference dti_FA.nii.gz --output CST.nii.gz
  • Generate a 3D Medial Surface for WM Bundle Using the CMREP Method:
vtklevelset CST.nii.gz CST.vtk 0.1
cmrep_vskel -c 3 -p 1.5 -g CST.vtk CST_skeleton.vtk
  • Run Medial Tractography Analysis (MeTA):
meta --subject 1234 --bundle CST --medial_surface CST_skeleton.vtk --volume CST.vtk --sbundle CST.trk --mbundle CST_model.trk --mask CST.nii.gz --num_segments 15 --output CST
  • Extract Segment Features:
meta_segment_features --subject 1234 --bundle CST --mask CST_segments_local_core.nii.gz --map FA.nii.gz --output CST_FA_15_segments_local_core_metrics.csv
  • Extract Streamline Features:
meta_streamlines_features --subject 1234 --bundle CST --mask CST.nii.gz --tractogram CST.trk --output CST_streamlines_metrics.csv