-
-
Notifications
You must be signed in to change notification settings - Fork 63
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
234 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
''' | ||
This example shows how to perform a Correlated Topic Model using tomotopy | ||
and visualize the correlation between topics. | ||
Required Packages: | ||
nltk, sklearn, pyvis | ||
''' | ||
|
||
import tomotopy as tp | ||
import nltk | ||
from nltk.corpus import stopwords | ||
import re | ||
from sklearn.datasets import fetch_20newsgroups | ||
from pyvis.network import Network | ||
|
||
try: | ||
# load if preprocessed corpus exists | ||
corpus = tp.utils.Corpus.load('preprocessed_20news.cps') | ||
except IOError: | ||
porter_stemmer = nltk.PorterStemmer().stem | ||
english_stops = set(porter_stemmer(w) for w in stopwords.words('english')) | ||
pat = re.compile('^[a-z]{2,}$') | ||
corpus = tp.utils.Corpus( | ||
tokenizer=tp.utils.SimpleTokenizer(porter_stemmer), | ||
stopwords=lambda x: x in english_stops or not pat.match(x) | ||
) | ||
newsgroups_train = fetch_20newsgroups() | ||
corpus.process(d.lower() for d in newsgroups_train.data) | ||
# save preprocessed corpus for reuse | ||
corpus.save('preprocessed_20news.cps') | ||
|
||
mdl = tp.CTModel(tw=tp.TermWeight.IDF, min_df=5, rm_top=40, k=30, corpus=corpus) | ||
mdl.train(0) | ||
|
||
# Since we have more than ten thousand of documents, | ||
# setting the `num_beta_sample` smaller value will not cause an inaccurate result. | ||
mdl.num_beta_sample = 5 | ||
print('Num docs:{}, Num Vocabs:{}, Total Words:{}'.format( | ||
len(mdl.docs), len(mdl.used_vocabs), mdl.num_words | ||
)) | ||
print('Removed Top words: ', *mdl.removed_top_words) | ||
|
||
# Let's train the model | ||
for i in range(0, 1000, 20): | ||
print('Iteration: {:04}, LL per word: {:.4}'.format(i, mdl.ll_per_word)) | ||
mdl.train(20) | ||
print('Iteration: {:04}, LL per word: {:.4}'.format(1000, mdl.ll_per_word)) | ||
|
||
# Let's visualize the result | ||
g = Network(width=800, height=800, font_color="#333") | ||
correl = mdl.get_correlations().reshape([-1]) | ||
correl.sort() | ||
top_tenth = mdl.k * (mdl.k - 1) // 10 | ||
top_tenth = correl[-mdl.k - top_tenth] | ||
|
||
for k in range(mdl.k): | ||
label = "#{}".format(k) | ||
title= ' '.join(word for word, _ in mdl.get_topic_words(k, top_n=6)) | ||
print('Topic', label, title) | ||
g.add_node(k, label=label, title=title, shape='ellipse') | ||
for l, correlation in zip(range(k - 1), mdl.get_correlations(k)): | ||
if correlation < top_tenth: continue | ||
g.add_edge(k, l, value=float(correlation), title='{:.02}'.format(correlation)) | ||
|
||
g.barnes_hut(gravity=-1000, spring_length=20) | ||
g.show_buttons() | ||
g.show("topic_network.html") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
''' | ||
This example show how to perform a g-DMR topic model using tomotopy | ||
and visualize a topic distribution map. | ||
Required Packages: | ||
matplotlib | ||
''' | ||
|
||
import tomotopy as tp | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import matplotlib.colors as clr | ||
|
||
class ExpNormalize(clr.Normalize): | ||
def __init__(self, scale): | ||
super().__init__() | ||
self.scale = scale | ||
|
||
def __call__(self, value, clip=None): | ||
if clip is None: | ||
clip = self.clip | ||
|
||
result, is_scalar = self.process_value(value) | ||
|
||
self.autoscale_None(result) | ||
(vmin,), _ = self.process_value(self.vmin) | ||
(vmax,), _ = self.process_value(self.vmax) | ||
if vmin == vmax: | ||
result.fill(0) | ||
elif vmin > vmax: | ||
raise ValueError("minvalue must be less than or equal to maxvalue") | ||
else: | ||
if clip: | ||
mask = np.ma.getmask(result) | ||
result = np.ma.array(np.clip(result.filled(vmax), vmin, vmax), | ||
mask=mask) | ||
resdat = result.data | ||
resdat = 1 - np.exp(-2 * resdat / self.scale) | ||
result = np.ma.array(resdat, mask=result.mask, copy=False) | ||
if is_scalar: | ||
result = result[0] | ||
return result | ||
|
||
heat = clr.LinearSegmentedColormap.from_list('heat', | ||
[(0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 0), (1, 1, 0), (1, 0, 0), (1, 1, 1)], | ||
N=1024 | ||
) | ||
|
||
''' | ||
You can get the sample data file from https://github.com/bab2min/g-dmr/tree/master/data . | ||
''' | ||
|
||
corpus = tp.utils.Corpus() | ||
for line in open('examples/dataset2.txt', encoding='utf-8'): | ||
fd = line.strip().split() | ||
corpus.add_doc(fd[2:], metadata=list(map(float, fd[:2]))) | ||
|
||
# We set a range of the first metadata as [2000, 2017] | ||
# and one of the second metadata as [0, 1]. | ||
mdl = tp.GDMRModel(tw=tp.TermWeight.PMI, k=30, degrees=[4, 3], | ||
alpha=1e-2, sigma=0.25, sigma0=3.0, | ||
metadata_range=[(2000, 2017), (0, 1)], corpus=corpus | ||
) | ||
mdl.optim_interval = 20 | ||
mdl.burn_in = 200 | ||
|
||
mdl.train(0) | ||
|
||
print('Num docs:{}, Num Vocabs:{}, Total Words:{}'.format( | ||
len(mdl.docs), len(mdl.used_vocabs), mdl.num_words | ||
)) | ||
|
||
# Let's train the model | ||
for i in range(0, 1000, 20): | ||
print('Iteration: {:04} LL per word: {:.4}'.format(i, mdl.ll_per_word)) | ||
mdl.train(20) | ||
print('Iteration: {:04} LL per word: {:.4}'.format(1000, mdl.ll_per_word)) | ||
|
||
# Let's visualize the result | ||
topic_counts = mdl.get_count_by_topics() | ||
lambdas = mdl.lambdas | ||
|
||
md_range = mdl.metadata_range | ||
# Our topic distribution map has | ||
# 400 pixels for the first axis and | ||
# 200 pixels for the second axis. | ||
r = mdl.tdf_linspace( | ||
[md_range[0][0], md_range[1][0]], | ||
[md_range[0][1], md_range[1][1]], | ||
[400, 200] | ||
) | ||
|
||
for k in (-topic_counts).argsort(): | ||
print('Topic #{} ({})'.format(k, topic_counts[k])) | ||
print(*(w for w, _ in mdl.get_topic_words(k))) | ||
print('Lambda:', lambdas[k]) | ||
|
||
imgplot = plt.imshow(r[:, :, k].transpose(), clim=(0.0, r[:, :, k].max()), | ||
origin='lower', cmap=heat, norm=ExpNormalize(scale=0.04), | ||
extent=[*md_range[0], *md_range[1]], | ||
aspect='auto' | ||
) | ||
plt.title('#{}\n({})'.format(k, ' '.join(w for w, _ in mdl.get_topic_words(k, top_n=5)))) | ||
plt.colorbar() | ||
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
''' | ||
This example shows how to perform a Latent Dirichlet Allocation using tomotopy | ||
and visualize the result. | ||
Required Packages: | ||
nltk, sklearn, pyldavis | ||
''' | ||
|
||
import tomotopy as tp | ||
import nltk | ||
from nltk.corpus import stopwords | ||
import re | ||
from sklearn.datasets import fetch_20newsgroups | ||
import numpy as np | ||
import pyLDAvis | ||
|
||
try: | ||
# load if preprocessed corpus exists | ||
corpus = tp.utils.Corpus.load('preprocessed_20news.cps') | ||
except IOError: | ||
porter_stemmer = nltk.PorterStemmer().stem | ||
english_stops = set(porter_stemmer(w) for w in stopwords.words('english')) | ||
pat = re.compile('^[a-z]{2,}$') | ||
corpus = tp.utils.Corpus( | ||
tokenizer=tp.utils.SimpleTokenizer(porter_stemmer), | ||
stopwords=lambda x: x in english_stops or not pat.match(x) | ||
) | ||
newsgroups_train = fetch_20newsgroups() | ||
corpus.process(d.lower() for d in newsgroups_train.data) | ||
# save preprocessed corpus for reuse | ||
corpus.save('preprocessed_20news.cps') | ||
|
||
mdl = tp.LDAModel(min_df=5, rm_top=40, k=30, corpus=corpus) | ||
mdl.train(0) | ||
|
||
print('Num docs:{}, Num Vocabs:{}, Total Words:{}'.format( | ||
len(mdl.docs), len(mdl.used_vocabs), mdl.num_words | ||
)) | ||
print('Removed Top words: ', *mdl.removed_top_words) | ||
|
||
# Let's train the model | ||
for i in range(0, 1000, 20): | ||
print('Iteration: {:04}, LL per word: {:.4}'.format(i, mdl.ll_per_word)) | ||
mdl.train(20) | ||
print('Iteration: {:04}, LL per word: {:.4}'.format(1000, mdl.ll_per_word)) | ||
|
||
topic_term_dists = np.stack([mdl.get_topic_word_dist(k) for k in range(mdl.k)]) | ||
doc_topic_dists = np.stack([doc.get_topic_dist() for doc in mdl.docs]) | ||
doc_lengths = np.array([len(doc.words) for doc in mdl.docs]) | ||
vocab = list(mdl.used_vocabs) | ||
term_frequency = mdl.used_vocab_freq | ||
|
||
prepared_data = pyLDAvis.prepare( | ||
topic_term_dists, | ||
doc_topic_dists, | ||
doc_lengths, | ||
vocab, | ||
term_frequency | ||
) | ||
pyLDAvis.save_html(prepared_data, 'ldavis.html') |