Skip to content

Commit

Permalink
Merge branch 'main' into pixtral_integration2
Browse files Browse the repository at this point in the history
  • Loading branch information
bursteratom authored Jan 6, 2025
2 parents ead8d21 + 3915abe commit 425c7cb
Showing 1 changed file with 42 additions and 2 deletions.
44 changes: 42 additions & 2 deletions src/axolotl/utils/data/pretraining.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,8 +28,10 @@ def encode_pretraining(
)
# Convert to PyTorch tensors
input_ids = [torch.tensor(seq) for seq in res["input_ids"]]
targets = [torch.tensor(seq) for seq in res["input_ids"]]
attention_mask = [torch.tensor(seq) for seq in res["attention_mask"]]
new_input_ids = []
new_labels = []
new_attention_mask = []
# Append EOS and PAD tokens to input_ids, and correct attention_mask
for i, _ in enumerate(input_ids):
Expand All @@ -40,22 +42,34 @@ def encode_pretraining(
),
dim=0,
)
targets[i] = torch.cat(
(
targets[i],
torch.tensor([tokenizer.eos_token_id, -100]),
),
dim=0,
)
attention_mask[i] = torch.cat((attention_mask[i], torch.tensor([1, 0])), dim=0)

# Concatenate tokens so that their lengths are less than max_tokens
buffer_input_ids = torch.tensor([], dtype=torch.long)
buffer_labels = torch.tensor([], dtype=torch.long)
buffer_attention_mask = torch.tensor([], dtype=torch.long)

for ids, mask in zip(input_ids, attention_mask):
for ids, labels, mask in zip(input_ids, targets, attention_mask):
if buffer_input_ids.numel() == max_tokens:
new_input_ids.append(buffer_input_ids)
new_labels.append(buffer_labels)
new_attention_mask.append(buffer_attention_mask)
buffer_input_ids = torch.tensor([], dtype=torch.long)
buffer_labels = torch.tensor([], dtype=torch.long)
buffer_attention_mask = torch.tensor([], dtype=torch.long)
buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
buffer_labels = torch.cat((buffer_labels, labels), dim=0)
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
elif buffer_input_ids.numel() + ids.numel() <= max_tokens:
buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
buffer_labels = torch.cat((buffer_labels, labels), dim=0)
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
else:
buffer_input_ids = torch.cat(
Expand All @@ -69,6 +83,17 @@ def encode_pretraining(
),
dim=0,
)
buffer_labels = torch.cat(
(
buffer_labels,
torch.full(
(max_tokens - buffer_labels.numel(),),
-100,
dtype=torch.long,
),
),
dim=0,
)
buffer_attention_mask = torch.cat(
(
buffer_attention_mask,
Expand All @@ -81,11 +106,14 @@ def encode_pretraining(
dim=0,
)
new_input_ids.append(buffer_input_ids)
new_labels.append(buffer_labels)
new_attention_mask.append(buffer_attention_mask)
buffer_input_ids = torch.tensor([], dtype=torch.long)
buffer_labels = torch.tensor([], dtype=torch.long)
buffer_attention_mask = torch.tensor([], dtype=torch.long)

buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
buffer_labels = torch.cat((buffer_labels, labels), dim=0)
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)

if buffer_input_ids.numel() > 0: # for any leftover tokens
Expand All @@ -101,6 +129,17 @@ def encode_pretraining(
),
dim=0,
)
buffer_labels = torch.cat(
(
buffer_labels,
torch.full(
(max_tokens - buffer_labels.numel(),),
-100,
dtype=torch.long,
),
),
dim=0,
)
buffer_attention_mask = torch.cat(
(
buffer_attention_mask,
Expand All @@ -113,11 +152,12 @@ def encode_pretraining(
dim=0,
)
new_input_ids.append(buffer_input_ids)
new_labels.append(buffer_labels)
new_attention_mask.append(buffer_attention_mask)

ret = {
"input_ids": [seq.tolist() for seq in new_input_ids],
"labels": [seq.tolist() for seq in new_input_ids],
"labels": [seq.tolist() for seq in new_labels],
"attention_mask": [seq.tolist() for seq in new_attention_mask],
}

Expand Down

0 comments on commit 425c7cb

Please sign in to comment.