Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added adaptation code, conversion code, and scripts for Qwen models. #19

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,260 @@
import argparse
import json
from pathlib import Path
import numpy as np
import torch
import os
import glob
from transformers import AutoModelForCausalLM


def fix_query_key_value_ordering(
param, checkpoint_version, num_splits, num_heads, hidden_size
):
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
input_shape = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
saved_shape = (num_heads, hidden_size, num_splits) + input_shape[1:]
param = param.view(*saved_shape)
param = param.transpose(0, 2)
param = param.transpose(1, 2).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
saved_shape = (num_splits, num_heads, hidden_size) + input_shape[1:]
param = param.view(*saved_shape)
param = param.transpose(0, 1).contiguous()
param = param.view(*input_shape)
return param


def convert_checkpoint(args):

with open(args.config_file, "r") as f:
config = json.load(f)
print(config)
br_key = "h." # Used to filter all transformer layers except layernorm

translation = {
"model.language_model.embedding.word_embeddings.weight": (1, "transformer.wte.weight", 0, 0), # a['model']['language_model']['word_embeddings']['weight']
"input_layernorm.weight": (0, "ln_1.weight", None, 0),
"self_attention.query_key_value.weight": (1, "attn.c_attn.weight", 0, 0),
"self_attention.query_key_value.bias": (1, "attn.c_attn.bias", 0, 0),
"self_attention.dense.weight": (1, "attn.c_proj.weight", 1, 0),
"post_attention_layernorm.weight": (0, "ln_2.weight", None, 0),
"self_attention.core_attention.rotary_emb.inv_freq": (0, "rotary_emb.inv_freq", None, 0),
"mlp.dense_h_to_4h.weight": (1, "mlp.w2.weight", 0, 0),
"mlp.dense_h_to_4h_2.weight": (1, "mlp.w1.weight", 0, 0),
"mlp.dense_4h_to_h.weight": (1, "mlp.c_proj.weight", 1, 0),
"model.language_model.encoder.final_layernorm.weight": (0, "transformer.ln_f.weight", None, 0),
"model.language_model.output_layer.weight": (1, "lm_head.weight", 0, 0), # this is shared
}

reverse_translation = {}
for k, v in translation.items():
split, br_k, dim, transpose = v
reverse_translation[br_k] = (split, k, dim, transpose)

TP = args.tp_degree
PP = args.pp_degree

hf_model = AutoModelForCausalLM.from_pretrained(args.path_to_checkpoint, trust_remote_code=True)
# hf_model.resize_token_embeddings(pad_to_multiple_of=128)
model_bedrock = hf_model.state_dict()

for i in range(config["num_hidden_layers"]):
model_bedrock[f"transformer.h.{i}.rotary_emb.inv_freq"] = hf_model.transformer.rotary_emb.inv_freq

print(list(model_bedrock.keys()))

print("Loaded QWen model")


for p in range(PP):
for i in range(TP):
print(f"=== PP {p}, TP {i} ===")
nemo_model = {}
for k, v in model_bedrock.items():
# print(f">>> {k}")
if "attention.masked_bias" in k:
# We don't want to copy attention mask bias, since its a constant of 1e4
continue
if br_key in k:
parts = k.split(br_key)[1].split(".")
layer_number = parts[0]
if int(layer_number) >= (config["num_hidden_layers"]//PP)*(p+1) or int(layer_number) < (config["num_hidden_layers"]//PP)*p:
continue
k = ".".join(parts[1:])
split, key, dim, tranpose = reverse_translation[k]
layer_number = layer_number if PP == 1 else str(int(layer_number) % (config["num_hidden_layers"]//PP))
key = "model.language_model.encoder.layers." + layer_number + "." + key
nemo_model[key] = v
if tranpose:
nemo_model[key]= torch.transpose(
nemo_model[key], 0, 1
)

if "query_key_value" in (key):
heads = config["num_attention_heads"]
hidden_size = config["hidden_size"]
hidden_size_per_head = config["hidden_size"] // heads

def permute_rotary(w):
assert w.shape == (heads, hidden_size_per_head, hidden_size*3)
return (
w.view(heads, hidden_size_per_head // 2, 2, hidden_size*3)
.transpose(1, 2)
.reshape(heads, hidden_size_per_head, hidden_size*3)
)

def permute(w, n_heads=heads, dim1=hidden_size, dim2=hidden_size*3):
return w.view(n_heads, 2, dim1 // n_heads // 2, dim2).transpose(1, 2).reshape(dim1, dim2)

if "weight" in key:
nemo_model[key] = permute_rotary(
permute(nemo_model[key]).view(
heads, hidden_size_per_head, hidden_size*3
)
)
nemo_model[key] = nemo_model[key].view(
3,
heads,
hidden_size_per_head,
hidden_size,
).transpose(0, 1).contiguous().view(
heads * 3 * hidden_size_per_head,
hidden_size,
)
nemo_model[key] = nemo_model[key].view(
TP,
heads * 3 * hidden_size_per_head // TP,
hidden_size,
)
elif "bias" in key:
nemo_model[key] = nemo_model[key].view(
3,
heads,
hidden_size_per_head,
).transpose(0, 1).contiguous().view(
heads * 3 * hidden_size_per_head
)
nemo_model[key] = nemo_model[key].view(
TP,
heads * 3 * hidden_size_per_head // TP,
)

if split:
if "query_key_value" in (key):
nemo_model[key] = nemo_model[key][i]
else:
tp_last_dim_size = nemo_model[key].shape[dim] // TP
if dim: # First or last dimension to shard
nemo_model[key] = nemo_model[key][
..., i * tp_last_dim_size : (i + 1) * tp_last_dim_size
].clone()
else:
nemo_model[key] = nemo_model[key][
i * tp_last_dim_size : (i + 1) * tp_last_dim_size, ...
].clone()

print(key, split, nemo_model[key].shape, v.shape)
else:
split, key, dim, transpose = reverse_translation[k]
if "wte" in k and p==0:
# Padding to make it divisble by TP degree
if v.shape[0] % TP > 0:
x = torch.nn.functional.pad(
v, (0, 0, 0, (TP - v.shape[0] % TP))
)
else:
x = v
last_dim_size = x.shape[0]
tp_last_dim_size = last_dim_size // TP
nemo_model[key] = x[
i * tp_last_dim_size : (i + 1) * tp_last_dim_size, ...
].clone()
print(key, split, nemo_model[key].shape, v.shape)
elif "transformer.ln_f" in k and p == (PP-1):
nemo_model[key] = v
print(key, split, nemo_model[key].shape, v.shape)
elif "lm_head" in k and p == (PP-1):
# Padding to make it divisble by TP degree
if v.shape[0] % TP > 0:
x = torch.nn.functional.pad(
v, (0, 0, 0, (TP - v.shape[0] % TP))
)
else:
x = v
if split:
tp_last_dim_size = x.shape[dim]//TP
if dim:
nemo_model[key] = x[..., i*tp_last_dim_size:(i+1)*tp_last_dim_size].clone()
else:
nemo_model[key] = x[i*tp_last_dim_size:(i+1)*tp_last_dim_size, ...].clone()
print(key, split, nemo_model[key].shape, v.shape)

if args.save_bf16:
for _k in nemo_model:
nemo_model[_k] = nemo_model[_k].to(dtype=torch.bfloat16, device='cpu')
out_model = {"state_dict": nemo_model}

output_folder = args.output_path
if TP > 1:
if PP>1:
output_folder = output_folder + f"/tp_rank_{i:02d}"
else:
output_folder = output_folder + f"/mp_rank_{i:02d}"
if PP > 1:
output_folder = output_folder + f"_pp_rank_{p:03d}"
if not os.path.exists(output_folder):
os.makedirs(output_folder)
torch.save(out_model, f"{output_folder}/model_optim_rng.ckpt") #, (not master_only), global_master=True)

print("Done saving Megatron checkpoint")


if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--checkpoint_version", default=2.0)
parser.add_argument(
"--path_to_checkpoint",
type=str,
help="Path to the checkpoint file (.zip archive or direct .pt file)",
)
parser.add_argument(
"--config_file",
default="",
type=str,
help="An optional config json file describing the pre-trained model.",
)
parser.add_argument(
"--output_path",
default="",
type=str,
help="output path",
)
parser.add_argument(
"--tp_degree",
default=1,
type=int,
help="Tensor parallelism",
)
parser.add_argument(
"--pp_degree",
default=1,
type=int,
help="Pipeline parallelism",
)
parser.add_argument(
"--save_bf16",
default=False,
type=bool,
help="Save weights in bf16.",
)
args = parser.parse_args()
convert_checkpoint(args)
Loading