Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix GenAI stacks deployment and streamlit sagemaker invocation errors #224

Merged
merged 6 commits into from
Jul 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions cdk/examples/generative_ai_service/requirements.txt
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
aws-cdk-lib==2.122.0
python-dotenv==0.21.0
aws-cdk-lib==2.147.3
python-dotenv==1.0.1
streamlit
boto3
sagemaker==2.218.0
sagemaker==2.224.2
sentence_transformers
opensearch-py
torch==2.1.1
torch==2.3.1
2 changes: 1 addition & 1 deletion cdk/examples/generative_ai_service/web-app/Dockerfile
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
FROM python:3.9
FROM public.ecr.aws/docker/library/python:3.9-slim
WORKDIR /app
COPY requirements.txt ./requirements.txt
RUN pip3 install -r requirements.txt
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,13 @@ def get_parameter(name):

conversation = """Customers were very excited about the wireless charging feature, but the launch has not lived up to their expectations. The phones are not reliably charging and that is frustrating since it is such a fundamental aspect of any electronic device."""

parameters = {
'max_new_tokens': 50,
'top_k': 50,
'top_p': 0.95,
'do_sample': True,
}

with st.spinner("Retrieving configurations..."):
all_configs_loaded = False

Expand All @@ -47,13 +54,14 @@ def get_parameter(name):
with st.spinner("Wait for it..."):
try:
prompt = f"{context}\n{query}"
payload = {'inputs': prompt,'parameters': parameters}
response = runtime.invoke_endpoint(
EndpointName=endpoint_name,
Body=prompt,
ContentType="application/x-text",
Body=json.dumps(payload).encode('utf-8'),
ContentType="application/json",
)
response_body = json.loads(response["Body"].read().decode())
generated_text = response_body["generated_text"]
generated_text = response_body[0]["generated_text"]
st.write(generated_text)

except requests.exceptions.ConnectionError as errc:
Expand Down
16 changes: 14 additions & 2 deletions cdk/examples/other_stack/txt2img_generative_ai_stack.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,13 +42,25 @@ def __init__(
containers=[
CfnModel.ContainerDefinitionProperty(
image=model_info["model_docker_image"],
model_data_url= "s3://"+model_info["model_bucket_name"]+"/"+model_info["model_bucket_key"],
model_data_source=CfnModel.ModelDataSourceProperty(
s3_data_source=CfnModel.S3DataSourceProperty(
compression_type='None',
s3_data_type='S3Prefix',
s3_uri=f's3://{model_info["model_bucket_name"]}/{model_info["model_bucket_key"]}',
model_access_config=CfnModel.ModelAccessConfigProperty(
accept_eula=True,
),
),
),
environment={
"MMS_MAX_RESPONSE_SIZE": "20000000",
"SAGEMAKER_CONTAINER_LOG_LEVEL": "20",
"SAGEMAKER_PROGRAM": "inference.py",
"SAGEMAKER_REGION": model_info["region_name"],
"SAGEMAKER_SUBMIT_DIRECTORY": "/opt/ml/model/code",
"ENDPOINT_SERVER_TIMEOUT": "3600",
"MODEL_CACHE_ROOT": "/opt/ml/model",
"SAGEMAKER_ENV": "1",
"SAGEMAKER_MODEL_SERVER_WORKERS": "1",
}
)
]
Expand Down
19 changes: 15 additions & 4 deletions cdk/examples/other_stack/txt2txt_generative_ai_stack.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,16 +42,27 @@ def __init__(
containers=[
CfnModel.ContainerDefinitionProperty(
image=model_info["model_docker_image"],
model_data_url= "s3://"+model_info["model_bucket_name"]+"/"+model_info["model_bucket_key"],
model_data_source=CfnModel.ModelDataSourceProperty(
s3_data_source=CfnModel.S3DataSourceProperty(
compression_type='None',
s3_data_type='S3Prefix',
s3_uri=f's3://{model_info["model_bucket_name"]}/{model_info["model_bucket_key"]}',
model_access_config=CfnModel.ModelAccessConfigProperty(
accept_eula=True,
),
),
),
environment={
"MODEL_CACHE_ROOT": "/opt/ml/model",
"SAGEMAKER_ENV": "1",
"SAGEMAKER_MODEL_SERVER_TIMEOUT": "3600",
"ENDPOINT_SERVER_TIMEOUT": "3600",
"SAGEMAKER_MODEL_SERVER_WORKERS": "1",
"SAGEMAKER_PROGRAM": "inference.py",
"SAGEMAKER_REGION": model_info["region_name"],
"SAGEMAKER_SUBMIT_DIRECTORY": "/opt/ml/model/code/",
"TS_DEFAULT_WORKERS_PER_MODEL": "1"
"HF_MODEL_ID": "/opt/ml/model",
"MAX_INPUT_LENGTH": "1024",
"MAX_TOTAL_TOKENS": "2048",
"SM_NUM_GPUS": "1",
}
)
]
Expand Down
Loading