forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[MLLIB] [SPARK-2222] Add multiclass evaluation metrics
Adding two classes: 1) MulticlassMetrics implements various multiclass evaluation metrics 2) MulticlassMetricsSuite implements unit tests for MulticlassMetrics Author: Alexander Ulanov <[email protected]> Author: unknown <[email protected]> Author: Xiangrui Meng <[email protected]> Closes apache#1155 from avulanov/master and squashes the following commits: 2eae80f [Alexander Ulanov] Merge pull request #1 from mengxr/avulanov-master 5ebeb08 [Xiangrui Meng] minor updates 79c3555 [Alexander Ulanov] Addressing reviewers comments mengxr 0fa9511 [Alexander Ulanov] Addressing reviewers comments mengxr f0dadc9 [Alexander Ulanov] Addressing reviewers comments mengxr 4811378 [Alexander Ulanov] Removing println 87fb11f [Alexander Ulanov] Addressing reviewers comments mengxr. Added confusion matrix e3db569 [Alexander Ulanov] Addressing reviewers comments mengxr. Added true positive rate and false positive rate. Test suite code style. a7e8bf0 [Alexander Ulanov] Addressing reviewers comments mengxr c3a77ad [Alexander Ulanov] Addressing reviewers comments mengxr e2c91c3 [Alexander Ulanov] Fixes to mutliclass metics d5ce981 [unknown] Comments about Double a5c8ba4 [unknown] Unit tests. Class rename fcee82d [unknown] Unit tests. Class rename d535d62 [unknown] Multiclass evaluation
- Loading branch information
Showing
2 changed files
with
280 additions
and
0 deletions.
There are no files selected for viewing
190 changes: 190 additions & 0 deletions
190
mllib/src/main/scala/org/apache/spark/mllib/evaluation/MulticlassMetrics.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.mllib.evaluation | ||
|
||
import scala.collection.Map | ||
|
||
import org.apache.spark.SparkContext._ | ||
import org.apache.spark.annotation.Experimental | ||
import org.apache.spark.mllib.linalg.{Matrices, Matrix} | ||
import org.apache.spark.rdd.RDD | ||
|
||
/** | ||
* ::Experimental:: | ||
* Evaluator for multiclass classification. | ||
* | ||
* @param predictionAndLabels an RDD of (prediction, label) pairs. | ||
*/ | ||
@Experimental | ||
class MulticlassMetrics(predictionAndLabels: RDD[(Double, Double)]) { | ||
|
||
private lazy val labelCountByClass: Map[Double, Long] = predictionAndLabels.values.countByValue() | ||
private lazy val labelCount: Long = labelCountByClass.values.sum | ||
private lazy val tpByClass: Map[Double, Int] = predictionAndLabels | ||
.map { case (prediction, label) => | ||
(label, if (label == prediction) 1 else 0) | ||
}.reduceByKey(_ + _) | ||
.collectAsMap() | ||
private lazy val fpByClass: Map[Double, Int] = predictionAndLabels | ||
.map { case (prediction, label) => | ||
(prediction, if (prediction != label) 1 else 0) | ||
}.reduceByKey(_ + _) | ||
.collectAsMap() | ||
private lazy val confusions = predictionAndLabels | ||
.map { case (prediction, label) => | ||
((label, prediction), 1) | ||
}.reduceByKey(_ + _) | ||
.collectAsMap() | ||
|
||
/** | ||
* Returns confusion matrix: | ||
* predicted classes are in columns, | ||
* they are ordered by class label ascending, | ||
* as in "labels" | ||
*/ | ||
def confusionMatrix: Matrix = { | ||
val n = labels.size | ||
val values = Array.ofDim[Double](n * n) | ||
var i = 0 | ||
while (i < n) { | ||
var j = 0 | ||
while (j < n) { | ||
values(i + j * n) = confusions.getOrElse((labels(i), labels(j)), 0).toDouble | ||
j += 1 | ||
} | ||
i += 1 | ||
} | ||
Matrices.dense(n, n, values) | ||
} | ||
|
||
/** | ||
* Returns true positive rate for a given label (category) | ||
* @param label the label. | ||
*/ | ||
def truePositiveRate(label: Double): Double = recall(label) | ||
|
||
/** | ||
* Returns false positive rate for a given label (category) | ||
* @param label the label. | ||
*/ | ||
def falsePositiveRate(label: Double): Double = { | ||
val fp = fpByClass.getOrElse(label, 0) | ||
fp.toDouble / (labelCount - labelCountByClass(label)) | ||
} | ||
|
||
/** | ||
* Returns precision for a given label (category) | ||
* @param label the label. | ||
*/ | ||
def precision(label: Double): Double = { | ||
val tp = tpByClass(label) | ||
val fp = fpByClass.getOrElse(label, 0) | ||
if (tp + fp == 0) 0 else tp.toDouble / (tp + fp) | ||
} | ||
|
||
/** | ||
* Returns recall for a given label (category) | ||
* @param label the label. | ||
*/ | ||
def recall(label: Double): Double = tpByClass(label).toDouble / labelCountByClass(label) | ||
|
||
/** | ||
* Returns f-measure for a given label (category) | ||
* @param label the label. | ||
* @param beta the beta parameter. | ||
*/ | ||
def fMeasure(label: Double, beta: Double): Double = { | ||
val p = precision(label) | ||
val r = recall(label) | ||
val betaSqrd = beta * beta | ||
if (p + r == 0) 0 else (1 + betaSqrd) * p * r / (betaSqrd * p + r) | ||
} | ||
|
||
/** | ||
* Returns f1-measure for a given label (category) | ||
* @param label the label. | ||
*/ | ||
def fMeasure(label: Double): Double = fMeasure(label, 1.0) | ||
|
||
/** | ||
* Returns precision | ||
*/ | ||
lazy val precision: Double = tpByClass.values.sum.toDouble / labelCount | ||
|
||
/** | ||
* Returns recall | ||
* (equals to precision for multiclass classifier | ||
* because sum of all false positives is equal to sum | ||
* of all false negatives) | ||
*/ | ||
lazy val recall: Double = precision | ||
|
||
/** | ||
* Returns f-measure | ||
* (equals to precision and recall because precision equals recall) | ||
*/ | ||
lazy val fMeasure: Double = precision | ||
|
||
/** | ||
* Returns weighted true positive rate | ||
* (equals to precision, recall and f-measure) | ||
*/ | ||
lazy val weightedTruePositiveRate: Double = weightedRecall | ||
|
||
/** | ||
* Returns weighted false positive rate | ||
*/ | ||
lazy val weightedFalsePositiveRate: Double = labelCountByClass.map { case (category, count) => | ||
falsePositiveRate(category) * count.toDouble / labelCount | ||
}.sum | ||
|
||
/** | ||
* Returns weighted averaged recall | ||
* (equals to precision, recall and f-measure) | ||
*/ | ||
lazy val weightedRecall: Double = labelCountByClass.map { case (category, count) => | ||
recall(category) * count.toDouble / labelCount | ||
}.sum | ||
|
||
/** | ||
* Returns weighted averaged precision | ||
*/ | ||
lazy val weightedPrecision: Double = labelCountByClass.map { case (category, count) => | ||
precision(category) * count.toDouble / labelCount | ||
}.sum | ||
|
||
/** | ||
* Returns weighted averaged f-measure | ||
* @param beta the beta parameter. | ||
*/ | ||
def weightedFMeasure(beta: Double): Double = labelCountByClass.map { case (category, count) => | ||
fMeasure(category, beta) * count.toDouble / labelCount | ||
}.sum | ||
|
||
/** | ||
* Returns weighted averaged f1-measure | ||
*/ | ||
lazy val weightedFMeasure: Double = labelCountByClass.map { case (category, count) => | ||
fMeasure(category, 1.0) * count.toDouble / labelCount | ||
}.sum | ||
|
||
/** | ||
* Returns the sequence of labels in ascending order | ||
*/ | ||
lazy val labels: Array[Double] = tpByClass.keys.toArray.sorted | ||
} |
90 changes: 90 additions & 0 deletions
90
mllib/src/test/scala/org/apache/spark/mllib/evaluation/MulticlassMetricsSuite.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,90 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.mllib.evaluation | ||
|
||
import org.scalatest.FunSuite | ||
|
||
import org.apache.spark.mllib.linalg.Matrices | ||
import org.apache.spark.mllib.util.LocalSparkContext | ||
|
||
class MulticlassMetricsSuite extends FunSuite with LocalSparkContext { | ||
test("Multiclass evaluation metrics") { | ||
/* | ||
* Confusion matrix for 3-class classification with total 9 instances: | ||
* |2|1|1| true class0 (4 instances) | ||
* |1|3|0| true class1 (4 instances) | ||
* |0|0|1| true class2 (1 instance) | ||
*/ | ||
val confusionMatrix = Matrices.dense(3, 3, Array(2, 1, 0, 1, 3, 0, 1, 0, 1)) | ||
val labels = Array(0.0, 1.0, 2.0) | ||
val predictionAndLabels = sc.parallelize( | ||
Seq((0.0, 0.0), (0.0, 1.0), (0.0, 0.0), (1.0, 0.0), (1.0, 1.0), | ||
(1.0, 1.0), (1.0, 1.0), (2.0, 2.0), (2.0, 0.0)), 2) | ||
val metrics = new MulticlassMetrics(predictionAndLabels) | ||
val delta = 0.0000001 | ||
val fpRate0 = 1.0 / (9 - 4) | ||
val fpRate1 = 1.0 / (9 - 4) | ||
val fpRate2 = 1.0 / (9 - 1) | ||
val precision0 = 2.0 / (2 + 1) | ||
val precision1 = 3.0 / (3 + 1) | ||
val precision2 = 1.0 / (1 + 1) | ||
val recall0 = 2.0 / (2 + 2) | ||
val recall1 = 3.0 / (3 + 1) | ||
val recall2 = 1.0 / (1 + 0) | ||
val f1measure0 = 2 * precision0 * recall0 / (precision0 + recall0) | ||
val f1measure1 = 2 * precision1 * recall1 / (precision1 + recall1) | ||
val f1measure2 = 2 * precision2 * recall2 / (precision2 + recall2) | ||
val f2measure0 = (1 + 2 * 2) * precision0 * recall0 / (2 * 2 * precision0 + recall0) | ||
val f2measure1 = (1 + 2 * 2) * precision1 * recall1 / (2 * 2 * precision1 + recall1) | ||
val f2measure2 = (1 + 2 * 2) * precision2 * recall2 / (2 * 2 * precision2 + recall2) | ||
|
||
assert(metrics.confusionMatrix.toArray.sameElements(confusionMatrix.toArray)) | ||
assert(math.abs(metrics.falsePositiveRate(0.0) - fpRate0) < delta) | ||
assert(math.abs(metrics.falsePositiveRate(1.0) - fpRate1) < delta) | ||
assert(math.abs(metrics.falsePositiveRate(2.0) - fpRate2) < delta) | ||
assert(math.abs(metrics.precision(0.0) - precision0) < delta) | ||
assert(math.abs(metrics.precision(1.0) - precision1) < delta) | ||
assert(math.abs(metrics.precision(2.0) - precision2) < delta) | ||
assert(math.abs(metrics.recall(0.0) - recall0) < delta) | ||
assert(math.abs(metrics.recall(1.0) - recall1) < delta) | ||
assert(math.abs(metrics.recall(2.0) - recall2) < delta) | ||
assert(math.abs(metrics.fMeasure(0.0) - f1measure0) < delta) | ||
assert(math.abs(metrics.fMeasure(1.0) - f1measure1) < delta) | ||
assert(math.abs(metrics.fMeasure(2.0) - f1measure2) < delta) | ||
assert(math.abs(metrics.fMeasure(0.0, 2.0) - f2measure0) < delta) | ||
assert(math.abs(metrics.fMeasure(1.0, 2.0) - f2measure1) < delta) | ||
assert(math.abs(metrics.fMeasure(2.0, 2.0) - f2measure2) < delta) | ||
|
||
assert(math.abs(metrics.recall - | ||
(2.0 + 3.0 + 1.0) / ((2 + 3 + 1) + (1 + 1 + 1))) < delta) | ||
assert(math.abs(metrics.recall - metrics.precision) < delta) | ||
assert(math.abs(metrics.recall - metrics.fMeasure) < delta) | ||
assert(math.abs(metrics.recall - metrics.weightedRecall) < delta) | ||
assert(math.abs(metrics.weightedFalsePositiveRate - | ||
((4.0 / 9) * fpRate0 + (4.0 / 9) * fpRate1 + (1.0 / 9) * fpRate2)) < delta) | ||
assert(math.abs(metrics.weightedPrecision - | ||
((4.0 / 9) * precision0 + (4.0 / 9) * precision1 + (1.0 / 9) * precision2)) < delta) | ||
assert(math.abs(metrics.weightedRecall - | ||
((4.0 / 9) * recall0 + (4.0 / 9) * recall1 + (1.0 / 9) * recall2)) < delta) | ||
assert(math.abs(metrics.weightedFMeasure - | ||
((4.0 / 9) * f1measure0 + (4.0 / 9) * f1measure1 + (1.0 / 9) * f1measure2)) < delta) | ||
assert(math.abs(metrics.weightedFMeasure(2.0) - | ||
((4.0 / 9) * f2measure0 + (4.0 / 9) * f2measure1 + (1.0 / 9) * f2measure2)) < delta) | ||
assert(metrics.labels.sameElements(labels)) | ||
} | ||
} |