Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update NPY001 rule for NumPy 2.0 #11735

Merged
merged 2 commits into from
Jun 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions crates/ruff_linter/resources/test/fixtures/numpy/NPY001.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,13 +3,13 @@
import numpy

# Error
npy.bool
npy.float
npy.int

if dtype == np.object:
...

result = result.select_dtypes([np.byte, np.ubyte, np.short, np.ushort, np.int, np.long])
result = result.select_dtypes([np.byte, np.ubyte, np.short, np.ushort, np.int, np.complex])

pdf = pd.DataFrame(
data=[[1, 2, 3]],
Expand Down
24 changes: 9 additions & 15 deletions crates/ruff_linter/src/rules/numpy/rules/deprecated_type_alias.rs
Original file line number Diff line number Diff line change
Expand Up @@ -10,23 +10,25 @@ use crate::checkers::ast::Checker;
/// Checks for deprecated NumPy type aliases.
///
/// ## Why is this bad?
/// NumPy's `np.int` has long been an alias of the builtin `int`. The same
/// goes for `np.float`, `np.bool`, and others. These aliases exist
/// primarily for historic reasons, and have been a cause of
/// frequent confusion for newcomers.
/// NumPy's `np.int` has long been an alias of the builtin `int`; the same
/// is true of `np.float` and others. These aliases exist primarily
/// for historic reasons, and have been a cause of frequent confusion
/// for newcomers.
///
/// These aliases were deprecated in 1.20, and removed in 1.24.
/// Note, however, that `np.bool` and `np.long` were reintroduced in 2.0 with
/// different semantics, and are thus omitted from this rule.
///
/// ## Examples
/// ```python
/// import numpy as np
///
/// np.bool
/// np.int
/// ```
///
/// Use instead:
/// ```python
/// bool
/// int
/// ```
#[violation]
pub struct NumpyDeprecatedTypeAlias {
Expand Down Expand Up @@ -63,14 +65,7 @@ pub(crate) fn deprecated_type_alias(checker: &mut Checker, expr: &Expr) {
qualified_name.segments(),
[
"numpy",
"bool"
| "int"
| "float"
| "complex"
| "object"
| "str"
| "long"
| "unicode"
"int" | "float" | "complex" | "object" | "str" | "unicode"
]
) {
Some(qualified_name.segments()[1])
Expand All @@ -87,7 +82,6 @@ pub(crate) fn deprecated_type_alias(checker: &mut Checker, expr: &Expr) {
);
let type_name = match type_name {
"unicode" => "str",
"long" => "int",
_ => type_name,
};
diagnostic.try_set_fix(|| {
Expand Down
Original file line number Diff line number Diff line change
@@ -1,29 +1,29 @@
---
source: crates/ruff_linter/src/rules/numpy/mod.rs
---
NPY001.py:6:1: NPY001 [*] Type alias `np.bool` is deprecated, replace with builtin type
NPY001.py:6:1: NPY001 [*] Type alias `np.float` is deprecated, replace with builtin type
|
5 | # Error
6 | npy.bool
| ^^^^^^^^ NPY001
6 | npy.float
| ^^^^^^^^^ NPY001
7 | npy.int
|
= help: Replace `np.bool` with builtin type
= help: Replace `np.float` with builtin type

ℹ Safe fix
3 3 | import numpy
4 4 |
5 5 | # Error
6 |-npy.bool
6 |+bool
6 |-npy.float
6 |+float
7 7 | npy.int
8 8 |
9 9 | if dtype == np.object:

NPY001.py:7:1: NPY001 [*] Type alias `np.int` is deprecated, replace with builtin type
|
5 | # Error
6 | npy.bool
6 | npy.float
7 | npy.int
| ^^^^^^^ NPY001
8 |
Expand All @@ -34,7 +34,7 @@ NPY001.py:7:1: NPY001 [*] Type alias `np.int` is deprecated, replace with builti
ℹ Safe fix
4 4 |
5 5 | # Error
6 6 | npy.bool
6 6 | npy.float
7 |-npy.int
7 |+int
8 8 |
Expand All @@ -52,20 +52,20 @@ NPY001.py:9:13: NPY001 [*] Type alias `np.object` is deprecated, replace with bu
= help: Replace `np.object` with builtin type

ℹ Safe fix
6 6 | npy.bool
6 6 | npy.float
7 7 | npy.int
8 8 |
9 |-if dtype == np.object:
9 |+if dtype == object:
10 10 | ...
11 11 |
12 12 | result = result.select_dtypes([np.byte, np.ubyte, np.short, np.ushort, np.int, np.long])
12 12 | result = result.select_dtypes([np.byte, np.ubyte, np.short, np.ushort, np.int, np.complex])

NPY001.py:12:72: NPY001 [*] Type alias `np.int` is deprecated, replace with builtin type
|
10 | ...
11 |
12 | result = result.select_dtypes([np.byte, np.ubyte, np.short, np.ushort, np.int, np.long])
12 | result = result.select_dtypes([np.byte, np.ubyte, np.short, np.ushort, np.int, np.complex])
| ^^^^^^ NPY001
13 |
14 | pdf = pd.DataFrame(
Expand All @@ -76,29 +76,29 @@ NPY001.py:12:72: NPY001 [*] Type alias `np.int` is deprecated, replace with buil
9 9 | if dtype == np.object:
10 10 | ...
11 11 |
12 |-result = result.select_dtypes([np.byte, np.ubyte, np.short, np.ushort, np.int, np.long])
12 |+result = result.select_dtypes([np.byte, np.ubyte, np.short, np.ushort, int, np.long])
12 |-result = result.select_dtypes([np.byte, np.ubyte, np.short, np.ushort, np.int, np.complex])
12 |+result = result.select_dtypes([np.byte, np.ubyte, np.short, np.ushort, int, np.complex])
13 13 |
14 14 | pdf = pd.DataFrame(
15 15 | data=[[1, 2, 3]],

NPY001.py:12:80: NPY001 [*] Type alias `np.long` is deprecated, replace with builtin type
NPY001.py:12:80: NPY001 [*] Type alias `np.complex` is deprecated, replace with builtin type
|
10 | ...
11 |
12 | result = result.select_dtypes([np.byte, np.ubyte, np.short, np.ushort, np.int, np.long])
| ^^^^^^^ NPY001
12 | result = result.select_dtypes([np.byte, np.ubyte, np.short, np.ushort, np.int, np.complex])
| ^^^^^^^^^^ NPY001
13 |
14 | pdf = pd.DataFrame(
|
= help: Replace `np.long` with builtin type
= help: Replace `np.complex` with builtin type

ℹ Safe fix
9 9 | if dtype == np.object:
10 10 | ...
11 11 |
12 |-result = result.select_dtypes([np.byte, np.ubyte, np.short, np.ushort, np.int, np.long])
12 |+result = result.select_dtypes([np.byte, np.ubyte, np.short, np.ushort, np.int, int])
12 |-result = result.select_dtypes([np.byte, np.ubyte, np.short, np.ushort, np.int, np.complex])
12 |+result = result.select_dtypes([np.byte, np.ubyte, np.short, np.ushort, np.int, complex])
13 13 |
14 14 | pdf = pd.DataFrame(
15 15 | data=[[1, 2, 3]],
Expand Down
Loading