Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add "output_type" argument #129

Merged
merged 1 commit into from
Apr 5, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 22 additions & 11 deletions tests/test_background_noise.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,11 +38,15 @@ def setUp(self):

self.bg_path = TEST_FIXTURES_DIR / "bg"
self.bg_short_path = TEST_FIXTURES_DIR / "bg_short"
self.bg_noise_transform_guaranteed = AddBackgroundNoise(self.bg_path, 20, p=1.0)
self.bg_noise_transform_guaranteed = AddBackgroundNoise(
self.bg_path, 20, p=1.0, output_type="dict"
)
self.bg_short_noise_transform_guaranteed = AddBackgroundNoise(
self.bg_short_path, 20, p=1.0
self.bg_short_path, 20, p=1.0, output_type="dict"
)
self.bg_noise_transform_no_guarantee = AddBackgroundNoise(
self.bg_path, 20, p=0.0, output_type="dict"
)
self.bg_noise_transform_no_guarantee = AddBackgroundNoise(self.bg_path, 20, p=0.0)

def test_background_noise_no_guarantee_with_single_tensor(self):
mixed_input = self.bg_noise_transform_no_guarantee(
Expand Down Expand Up @@ -118,7 +122,11 @@ def test_varying_snr_within_batch(self):
min_snr_in_db = 3
max_snr_in_db = 30
augment = AddBackgroundNoise(
self.bg_path, min_snr_in_db=min_snr_in_db, max_snr_in_db=max_snr_in_db, p=1.0
self.bg_path,
min_snr_in_db=min_snr_in_db,
max_snr_in_db=max_snr_in_db,
p=1.0,
output_type="dict",
)
augmented_audios = augment(self.input_audios, self.sample_rate).samples

Expand All @@ -142,13 +150,17 @@ def test_varying_snr_within_batch(self):
def test_invalid_params(self):
with self.assertRaises(ValueError):
augment = AddBackgroundNoise(
self.bg_path, min_snr_in_db=30, max_snr_in_db=3, p=1.0
self.bg_path, min_snr_in_db=30, max_snr_in_db=3, p=1.0, output_type="dict"
)

def test_min_equals_max(self):
desired_snr = 3.0
augment = AddBackgroundNoise(
self.bg_path, min_snr_in_db=desired_snr, max_snr_in_db=desired_snr, p=1.0
self.bg_path,
min_snr_in_db=desired_snr,
max_snr_in_db=desired_snr,
p=1.0,
output_type="dict",
)
augmented_audios = augment(self.input_audios, self.sample_rate).samples

Expand All @@ -171,11 +183,9 @@ def test_compatibility_of_resampled_length(self):
input_sample_rate = random.randint(1000, 5000)
bg_sample_rate = random.randint(1000, 5000)

noise = np.random.uniform(
low=-0.2,
high=0.2,
size=(bg_length,),
).astype(np.float32)
noise = np.random.uniform(low=-0.2, high=0.2, size=(bg_length,),).astype(
np.float32
)
tmp_dir = os.path.join(tempfile.gettempdir(), str(uuid.uuid4()))
try:
os.makedirs(tmp_dir)
Expand All @@ -192,6 +202,7 @@ def test_compatibility_of_resampled_length(self):
max_snr_in_db=6,
p=1.0,
sample_rate=input_sample_rate,
output_type="dict",
)
transform(input_audio)
except Exception:
Expand Down
2 changes: 1 addition & 1 deletion tests/test_band_pass_filter.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ def test_band_pass_filter(self):
)
sample_rate = 16000

augment = BandPassFilter(p=1.0)
augment = BandPassFilter(p=1.0, output_type="dict")
for _ in range(20):
processed_samples = augment(
samples=torch.from_numpy(samples), sample_rate=sample_rate
Expand Down
2 changes: 1 addition & 1 deletion tests/test_band_stop_filter.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ def test_band_reject_filter(self):
)
sample_rate = 16000

augment = BandStopFilter(p=1.0)
augment = BandStopFilter(p=1.0, output_type="dict")
processed_samples = augment(
samples=torch.from_numpy(samples), sample_rate=sample_rate
).samples.numpy()
Expand Down
4 changes: 2 additions & 2 deletions tests/test_base_class.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,12 +10,12 @@
class TestBaseClass(unittest.TestCase):
def test_parameters(self):
# Test that we can access the parameters function of nn.Module
augment = PolarityInversion(p=1.0)
augment = PolarityInversion(p=1.0, output_type="dict")
params = augment.parameters()
assert isinstance(params, types.GeneratorType)

def test_ndim_check(self):
augment = PolarityInversion(p=1.0)
augment = PolarityInversion(p=1.0, output_type="dict")
# 1D tensor not allowed
with pytest.raises(RuntimeError):
augment(torch.tensor([1.0, 0.5, 0.25, 0.125], dtype=torch.float32))
Expand Down
12 changes: 8 additions & 4 deletions tests/test_colored_noise.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,8 +20,12 @@ def setUp(self):
).unsqueeze(0)

self.input_audios = torch.cat([self.input_audio] * self.batch_size, dim=0)
self.cl_noise_transform_guaranteed = AddColoredNoise(20, p=1.0)
self.cl_noise_transform_no_guarantee = AddColoredNoise(20, p=0.0)
self.cl_noise_transform_guaranteed = AddColoredNoise(
20, p=1.0, output_type="dict"
)
self.cl_noise_transform_no_guarantee = AddColoredNoise(
20, p=0.0, output_type="dict"
)

def test_colored_noise_no_guarantee_with_single_tensor(self):
mixed_input = self.cl_noise_transform_no_guarantee(
Expand Down Expand Up @@ -76,6 +80,6 @@ def test_colored_noise_guaranteed_with_batched_tensor(self):

def test_invalid_params(self):
with self.assertRaises(ValueError):
AddColoredNoise(min_snr_in_db=30, max_snr_in_db=3, p=1.0)
AddColoredNoise(min_snr_in_db=30, max_snr_in_db=3, p=1.0, output_type="dict")
with self.assertRaises(ValueError):
AddColoredNoise(min_f_decay=2, max_f_decay=1, p=1.0)
AddColoredNoise(min_f_decay=2, max_f_decay=1, p=1.0, output_type="dict")
23 changes: 13 additions & 10 deletions tests/test_compose.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,8 @@ def test_compose(self):
[
Gain(min_gain_in_db=-6.000001, max_gain_in_db=-6, p=1.0),
PolarityInversion(p=1.0),
]
],
output_type="dict",
)
processed_samples = augment(
samples=torch.from_numpy(samples), sample_rate=sample_rate
Expand All @@ -38,7 +39,9 @@ def test_compose_with_torchaudio_transform(self):
samples = np.array([[[1.0, 0.5, -0.25, -0.125, 0.0]]], dtype=np.float32)
sample_rate = 16000

augment = Compose([Vol(gain=-6, gain_type="db"), PolarityInversion(p=1.0)])
augment = Compose(
[Vol(gain=-6, gain_type="db"), PolarityInversion(p=1.0),], output_type="dict"
)
processed_samples = augment(
samples=torch.from_numpy(samples), sample_rate=sample_rate
).samples.numpy()
Expand All @@ -61,6 +64,7 @@ def test_compose_with_p_zero(self):
PolarityInversion(p=1.0),
],
p=0.0,
output_type="dict",
)
processed_samples = augment(
samples=torch.from_numpy(samples), sample_rate=sample_rate
Expand All @@ -75,9 +79,10 @@ def test_freeze_and_unfreeze_parameters(self):

augment = Compose(
transforms=[
Gain(min_gain_in_db=-16.000001, max_gain_in_db=-2, p=1.0),
Gain(min_gain_in_db=-16.000001, max_gain_in_db=-2, p=1.0,),
PolarityInversion(p=1.0),
]
],
output_type="dict",
)

processed_samples1 = augment(
Expand Down Expand Up @@ -106,6 +111,7 @@ def test_shuffle(self):
PeakNormalization(p=1.0),
],
shuffle=True,
output_type="dict",
)
num_peak_normalization_last = 0
num_gain_last = 0
Expand All @@ -126,14 +132,11 @@ def test_shuffle(self):
self.assertGreater(num_gain_last, 10)

def test_supported_modes_property(self):
augment = Compose(
transforms=[
PeakNormalization(p=1.0),
],
)
augment = Compose(transforms=[PeakNormalization(p=1.0),], output_type="dict")
assert augment.supported_modes == {"per_batch", "per_example", "per_channel"}

augment = Compose(
transforms=[PeakNormalization(p=1.0), ShuffleChannels(p=1.0)],
transforms=[PeakNormalization(p=1.0,), ShuffleChannels(p=1.0,),],
output_type="dict",
)
assert augment.supported_modes == {"per_example"}
26 changes: 17 additions & 9 deletions tests/test_differentiable.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,26 +25,34 @@
"augment",
[
# Differentiable transforms:
AddBackgroundNoise(BG_NOISE_PATH, 20, p=1.0),
ApplyImpulseResponse(IR_PATH, p=1.0),
AddBackgroundNoise(BG_NOISE_PATH, 20, p=1.0, output_type="dict"),
ApplyImpulseResponse(IR_PATH, p=1.0, output_type="dict"),
Compose(
transforms=[
Gain(min_gain_in_db=-15.0, max_gain_in_db=5.0, p=1.0),
PolarityInversion(p=1.0),
]
],
output_type="dict",
),
Gain(min_gain_in_db=-6.000001, max_gain_in_db=-6, p=1.0),
PolarityInversion(p=1.0),
Shift(p=1.0),
Gain(min_gain_in_db=-6.000001, max_gain_in_db=-6, p=1.0, output_type="dict"),
PolarityInversion(p=1.0, output_type="dict"),
Shift(p=1.0, output_type="dict"),
# Non-differentiable transforms:
# RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation:
# [torch.DoubleTensor [1, 1, 5]], which is output 0 of IndexBackward, is at version 1; expected version 0 instead.
# Hint: enable anomaly detection to find the operation that failed to compute its gradient,
# with torch.autograd.set_detect_anomaly(True).
pytest.param(HighPassFilter(p=1.0), marks=pytest.mark.skip("Not differentiable")),
pytest.param(LowPassFilter(p=1.0), marks=pytest.mark.skip("Not differentiable")),
pytest.param(
PeakNormalization(p=1.0), marks=pytest.mark.skip("Not differentiable")
HighPassFilter(p=1.0, output_type="dict"),
marks=pytest.mark.skip("Not differentiable"),
),
pytest.param(
LowPassFilter(p=1.0, output_type="dict"),
marks=pytest.mark.skip("Not differentiable"),
),
pytest.param(
PeakNormalization(p=1.0, output_type="dict"),
marks=pytest.mark.skip("Not differentiable"),
),
],
)
Expand Down
Loading