Skip to content

Commit

Permalink
llama : add reranking support (ggerganov#9510)
Browse files Browse the repository at this point in the history
* py : add XLMRobertaForSequenceClassification [no ci]

* py : fix scalar-tensor conversion [no ci]

* py : fix position embeddings chop [no ci]

* llama : read new cls tensors [no ci]

* llama : add classigication head (wip) [no ci]

* llama : add "rank" pooling type

ggml-ci

* server : add rerank endpoint

ggml-ci

* llama : aboud ggml_repeat during classification

* rerank : cleanup + comments

* server : accept /rerank endpoint in addition to /v1/rerank [no ci]

* embedding : parse special tokens

* jina : support v1 reranker

* vocab : minor style

ggml-ci

* server : initiate tests for later

ggml-ci

* server : add docs

* llama : add comment [no ci]

* llama : fix uninitialized tensors

* ci : add rerank tests

ggml-ci

* add reranking test

* change test data

* Update examples/server/server.cpp

Co-authored-by: Xuan Son Nguyen <[email protected]>

* add `--reranking` argument

* update server docs

* llama : fix comment [no ci]

ggml-ci

---------

Co-authored-by: Xuan Son Nguyen <[email protected]>
Co-authored-by: Xuan Son Nguyen <[email protected]>
  • Loading branch information
3 people authored and arthw committed Nov 18, 2024
1 parent 60172bc commit 03b4824
Show file tree
Hide file tree
Showing 18 changed files with 602 additions and 56 deletions.
85 changes: 76 additions & 9 deletions ci/run.sh
Original file line number Diff line number Diff line change
Expand Up @@ -712,6 +712,81 @@ function gg_run_embd_bge_small {
set +e
}

function gg_sum_embd_bge_small {
gg_printf '### %s\n\n' "${ci}"

gg_printf 'BGE Small (BERT):\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
}

# rerank_tiny

function gg_run_rerank_tiny {
cd ${SRC}

gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/config.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/tokenizer.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/tokenizer_config.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/special_tokens_map.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/resolve/main/pytorch_model.bin
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/sentence_bert_config.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/vocab.txt
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/modules.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/config.json

gg_wget models-mnt/rerank-tiny/1_Pooling https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/1_Pooling/config.json

path_models="../models-mnt/rerank-tiny"

rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release

set -e

(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log

python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf

model_f16="${path_models}/ggml-model-f16.gguf"

(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?</s><s>hi\nwhat is panda?</s><s>it's a bear\nwhat is panda?</s><s>The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." --pooling rank --embd-normalize -1 --verbose-prompt) 2>&1 | tee -a $OUT/${ci}-rk-f16.log

# sample output
# rerank score 0: 0.029
# rerank score 1: 0.029
# rerank score 2: 0.135

# check that the score is in the range [$3, $4]
function check_score {
qnt="$1"
score=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)

if [ $(echo "$score < $3" | bc) -eq 1 ] || [ $(echo "$score > $4" | bc) -eq 1 ]; then
printf ' - %s @ %s (FAIL: score not in range [%s, %s])\n' "$qnt" "$score" "$3" "$4"
return 20
fi

printf ' - %s @ %s OK\n' "$qnt" "$score"
return 0
}

check_score "rerank score 0" "$(cat $OUT/${ci}-rk-f16.log | grep "rerank score 0")" "0.00" "0.05" | tee -a $OUT/${ci}-rk-f16.log
check_score "rerank score 1" "$(cat $OUT/${ci}-rk-f16.log | grep "rerank score 1")" "0.00" "0.05" | tee -a $OUT/${ci}-rk-f16.log
check_score "rerank score 2" "$(cat $OUT/${ci}-rk-f16.log | grep "rerank score 2")" "0.10" "0.15" | tee -a $OUT/${ci}-rk-f16.log

set +e
}

function gg_sum_rerank_tiny {
gg_printf '### %s\n\n' "${ci}"

gg_printf 'Rerank Tiny (Jina):\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-rk-f16.log)"
}

function gg_check_build_requirements {
if ! command -v cmake &> /dev/null; then
gg_printf 'cmake not found, please install'
Expand All @@ -726,15 +801,6 @@ function gg_check_build_requirements {
fi
}

function gg_sum_embd_bge_small {
gg_printf '### %s\n\n' "${ci}"

gg_printf 'BGE Small (BERT):\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
}

## main

export LLAMA_LOG_PREFIX=1
Expand Down Expand Up @@ -762,6 +828,7 @@ test $ret -eq 0 && gg_run ctest_release

if [ -z ${GG_BUILD_LOW_PERF} ]; then
test $ret -eq 0 && gg_run embd_bge_small
test $ret -eq 0 && gg_run rerank_tiny

if [ -z ${GG_BUILD_CLOUD} ] || [ ${GG_BUILD_EXTRA_TESTS_0} ]; then
test $ret -eq 0 && gg_run test_scripts_debug
Expand Down
18 changes: 15 additions & 3 deletions common/arg.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -284,6 +284,10 @@ static bool gpt_params_parse_ex(int argc, char ** argv, gpt_params_context & ctx
params.kv_overrides.back().key[0] = 0;
}

if (params.reranking && params.embedding) {
throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both");
}

return true;
}

Expand Down Expand Up @@ -391,7 +395,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
[](gpt_params & params) {
params.verbose_prompt = true;
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
));
add_opt(llama_arg(
{"--no-display-prompt"},
format("don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false"),
Expand Down Expand Up @@ -1093,13 +1097,14 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
}
).set_sparam());
add_opt(llama_arg(
{"--pooling"}, "{none,mean,cls,last}",
{"--pooling"}, "{none,mean,cls,last,rank}",
"pooling type for embeddings, use model default if unspecified",
[](gpt_params & params, const std::string & value) {
/**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; }
else if (value == "rank") { params.pooling_type = LLAMA_POOLING_TYPE_RANK; }
else { throw std::invalid_argument("invalid value"); }
}
).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_POOLING"));
Expand Down Expand Up @@ -1749,6 +1754,13 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
params.embedding = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS"));
add_opt(llama_arg(
{"--reranking", "--rerank"},
format("enable reranking endpoint on server (default: %s)", params.reranking ? "enabled" : "disabled"),
[](gpt_params & params) {
params.reranking = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING"));
add_opt(llama_arg(
{"--api-key"}, "KEY",
"API key to use for authentication (default: none)",
Expand Down
5 changes: 5 additions & 0 deletions common/common.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1023,6 +1023,11 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
cparams.flash_attn = params.flash_attn;
cparams.no_perf = params.no_perf;

if (params.reranking) {
cparams.embeddings = true;
cparams.pooling_type = LLAMA_POOLING_TYPE_RANK;
}

cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
cparams.type_v = kv_cache_type_from_str(params.cache_type_v);

Expand Down
1 change: 1 addition & 0 deletions common/common.h
Original file line number Diff line number Diff line change
Expand Up @@ -271,6 +271,7 @@ struct gpt_params {
int32_t embd_normalize = 2; // normalisation for embendings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
std::string embd_sep = "\n"; // separator of embendings
bool reranking = false; // enable reranking support on server

// server params
int32_t port = 8080; // server listens on this network port
Expand Down
27 changes: 24 additions & 3 deletions convert_hf_to_gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -291,8 +291,13 @@ def prepare_tensors(self):
bid = int(part)
break

for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
data: np.ndarray # type hint
for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
data = data_torch.squeeze().numpy()

# if data ends up empty, it means data_torch was a scalar tensor -> restore
if len(data.shape) == 0:
data = data_torch.numpy()

n_dims = len(data.shape)
data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)

Expand Down Expand Up @@ -592,6 +597,9 @@ def get_vocab_base_pre(self, tokenizer) -> str:
if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
# ref: https://huggingface.co/databricks/dbrx-base
res = "dbrx"
if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
# ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
res = "jina-v1-en"
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
res = "jina-v2-en"
Expand Down Expand Up @@ -2601,7 +2609,7 @@ def set_gguf_parameters(self):
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])


@Model.register("XLMRobertaModel")
@Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
class XLMRobertaModel(BertModel):
model_arch = gguf.MODEL_ARCH.BERT

Expand Down Expand Up @@ -2699,6 +2707,11 @@ def set_vocab(self):
self.gguf_writer.add_add_eos_token(True)

def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# if name starts with "roberta.", remove the prefix
# e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
if name.startswith("roberta."):
name = name[8:]

# position embeddings start at pad_token_id + 1, so just chop down the weight tensor
if name == "embeddings.position_embeddings.weight":
if self._position_offset is not None:
Expand Down Expand Up @@ -3110,6 +3123,14 @@ def set_vocab(self):
self.gguf_writer.add_add_bos_token(True)
self.gguf_writer.add_add_eos_token(True)

def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# if name starts with "bert.", remove the prefix
# e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
if name.startswith("bert."):
name = name[5:]

return super().modify_tensors(data_torch, name, bid)


@Model.register("OpenELMForCausalLM")
class OpenELMModel(Model):
Expand Down
1 change: 1 addition & 0 deletions convert_hf_to_gguf_update.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,6 +81,7 @@ class TOKENIZER_TYPE(IntEnum):
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
{"name": "jina-v1-en", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-reranker-v1-tiny-en", },
{"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
Expand Down
7 changes: 6 additions & 1 deletion examples/embedding/embedding.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -135,7 +135,7 @@ int main(int argc, char ** argv) {
// tokenize the prompts and trim
std::vector<std::vector<int32_t>> inputs;
for (const auto & prompt : prompts) {
auto inp = ::llama_tokenize(ctx, prompt, true, false);
auto inp = ::llama_tokenize(ctx, prompt, true, true);
if (inp.size() > n_batch) {
LOG_ERR("%s: number of tokens in input line (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
__func__, (long long int) inp.size(), (long long int) n_batch);
Expand Down Expand Up @@ -234,6 +234,11 @@ int main(int argc, char ** argv) {
}
LOG("\n");
}
} else if (pooling_type == LLAMA_POOLING_TYPE_RANK) {
for (int j = 0; j < n_embd_count; j++) {
// NOTE: if you change this log - update the tests in ci/run.sh
LOG("rerank score %d: %8.3f\n", j, emb[j * n_embd]);
}
} else {
// print the first part of the embeddings or for a single prompt, the full embedding
for (int j = 0; j < n_prompts; j++) {
Expand Down
39 changes: 38 additions & 1 deletion examples/server/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@ Set of LLM REST APIs and a simple web front end to interact with llama.cpp.
**Features:**
* LLM inference of F16 and quantized models on GPU and CPU
* [OpenAI API](https://github.com/openai/openai-openapi) compatible chat completions and embeddings routes
* Reranking endoint (WIP: https://github.com/ggerganov/llama.cpp/pull/9510)
* Parallel decoding with multi-user support
* Continuous batching
* Multimodal (wip)
Expand All @@ -23,6 +24,7 @@ The project is under active development, and we are [looking for feedback and co
| -------- | ----------- |
| `-h, --help, --usage` | print usage and exit |
| `--version` | show version and build info |
| `--verbose-prompt` | print a verbose prompt before generation (default: false) |
| `-t, --threads N` | number of threads to use during generation (default: -1)<br/>(env: LLAMA_ARG_THREADS) |
| `-tb, --threads-batch N` | number of threads to use during batch and prompt processing (default: same as --threads) |
| `-C, --cpu-mask M` | CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: "") |
Expand Down Expand Up @@ -130,14 +132,15 @@ The project is under active development, and we are [looking for feedback and co
| `--no-context-shift` | disables context shift on inifinite text generation (default: disabled)<br/>(env: LLAMA_ARG_NO_CONTEXT_SHIFT) |
| `-sp, --special` | special tokens output enabled (default: false) |
| `--spm-infill` | use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: disabled) |
| `--pooling {none,mean,cls,last}` | pooling type for embeddings, use model default if unspecified<br/>(env: LLAMA_ARG_POOLING) |
| `--pooling {none,mean,cls,last,rank}` | pooling type for embeddings, use model default if unspecified<br/>(env: LLAMA_ARG_POOLING) |
| `-cb, --cont-batching` | enable continuous batching (a.k.a dynamic batching) (default: enabled)<br/>(env: LLAMA_ARG_CONT_BATCHING) |
| `-nocb, --no-cont-batching` | disable continuous batching<br/>(env: LLAMA_ARG_NO_CONT_BATCHING) |
| `-a, --alias STRING` | set alias for model name (to be used by REST API)<br/>(env: LLAMA_ARG_ALIAS) |
| `--host HOST` | ip address to listen (default: 127.0.0.1)<br/>(env: LLAMA_ARG_HOST) |
| `--port PORT` | port to listen (default: 8080)<br/>(env: LLAMA_ARG_PORT) |
| `--path PATH` | path to serve static files from (default: )<br/>(env: LLAMA_ARG_STATIC_PATH) |
| `--embedding, --embeddings` | restrict to only support embedding use case; use only with dedicated embedding models (default: disabled)<br/>(env: LLAMA_ARG_EMBEDDINGS) |
| `--reranking, --rerank` | enable reranking endpoint on server (default: disabled)<br/>(env: LLAMA_ARG_RERANKING) |
| `--api-key KEY` | API key to use for authentication (default: none)<br/>(env: LLAMA_API_KEY) |
| `--api-key-file FNAME` | path to file containing API keys (default: none) |
| `--ssl-key-file FNAME` | path to file a PEM-encoded SSL private key<br/>(env: LLAMA_ARG_SSL_KEY_FILE) |
Expand All @@ -152,6 +155,7 @@ The project is under active development, and we are [looking for feedback and co
| `-sps, --slot-prompt-similarity SIMILARITY` | how much the prompt of a request must match the prompt of a slot in order to use that slot (default: 0.50, 0.0 = disabled)<br/> |
| `--lora-init-without-apply` | load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: disabled) |


Note: If both command line argument and environment variable are both set for the same param, the argument will take precedence over env var.

Example usage of docker compose with environment variables:
Expand Down Expand Up @@ -478,6 +482,39 @@ The same as [the embedding example](../embedding) does.

`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `content`. You can determine the place of the image in the content as in the following: `Image: [img-21].\nCaption: This is a picture of a house`. In this case, `[img-21]` will be replaced by the embeddings of the image with id `21` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 21}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.

### POST `/reranking`: Rerank documents according to a given query

Similar to https://jina.ai/reranker/ but might change in the future.
Requires a reranker model (such as [bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3)) and the `--embedding --pooling rank` options.

*Options:*

`query`: The query against which the documents will be ranked.

`documents`: An array strings representing the documents to be ranked.

*Aliases:*
- `/rerank`
- `/v1/rerank`
- `/v1/reranking`

*Examples:*

```shell
curl http://127.0.0.1:8012/v1/rerank \
-H "Content-Type: application/json" \
-d '{
"model": "some-model",
"query": "What is panda?",
"top_n": 3,
"documents": [
"hi",
"it is a bear",
"The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China."
]
}' | jq
```

### POST `/infill`: For code infilling.

Takes a prefix and a suffix and returns the predicted completion as stream.
Expand Down
Loading

0 comments on commit 03b4824

Please sign in to comment.