Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Revert "documentation/readmes (#131)" #140

Merged
merged 1 commit into from
Mar 28, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 0 additions & 58 deletions .github/workflows/mdbook.yml

This file was deleted.

2 changes: 1 addition & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -156,4 +156,4 @@ experiments
*.pt
*.mp4

guide/book
guide/book
38 changes: 38 additions & 0 deletions DOWNLOAD.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
# Downloading the Argoverse 2 Datasets
Our datasets are available for download from [AWS S3](https://aws.amazon.com/s3/). For the best experience, we highly recommend using the open-source [s5cmd](https://github.com/peak/s5cmd) tool to transfer the data to your local filesystem (additional info available [here](https://aws.amazon.com/blogs/opensource/parallelizing-s3-workloads-s5cmd/)). Please note that an AWS account is not required to download the datasets.

### Installing `s5cmd`

`s5cmd` can be easily installed with the following script:

```bash
#!/usr/bin/env bash

export INSTALL_DIR=$HOME/.local/bin
export PATH=$PATH:$INSTALL_DIR
export S5CMD_URI=https://github.com/peak/s5cmd/releases/download/v1.4.0/s5cmd_1.4.0_$(uname | sed 's/Darwin/macOS/g')-64bit.tar.gz

mkdir -p $INSTALL_DIR
curl -sL $S5CMD_URI | tar -C $INSTALL_DIR -xvzf - s5cmd
```

Note that it will install `s5cmd` in your local bin directory. You can always change the path if you prefer installing it in another directory.

### Downloading Datasets
Once `s5cmd` is installed installed, downloading a dataset is as easy as running the following (using the sensor dataset as an example):

```bash
s5cmd --no-sign-request cp "s3://argoai-argoverse/av2/sensor/*" target-directory
```

The command will download all S3 objects to the target directory (for example, `target-directory` can be `/home/av2/sensors/`). Given the size of the dataset, it might take a couple of hours depending on the network connectivity.

When the download is finished, the dataset is ready to use!

### Dataset S3 Locations
```bash
s3://argoai-argoverse/av2/sensor/
s3://argoai-argoverse/av2/lidar/
s3://argoai-argoverse/av2/motion-forecasting/
s3://argoai-argoverse/av2/tbv/
```
130 changes: 112 additions & 18 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,34 +2,123 @@
![CI Status](https://github.com/argoai/av2-api/actions/workflows/ci.yml/badge.svg)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](./LICENSE)

# Argoverse 2
# Argoverse 2 API

> _Official_ GitHub repository for the [Argoverse 2](https://www.argoverse.org) family of datasets.

<p align="center">
<img src="https://user-images.githubusercontent.com/29715011/157802162-e40098c1-8677-4c16-ac60-e9bbded6badf.png" height="300">
</p>
If you have any questions or run into any problems with either the data or API, please feel free to open a [GitHub issue](https://github.com/argoai/av2-api/issues)!

## Announcements

### Argoverse competitions are live!
- Argoverse 2
- 3D Object Detection
- Challenge Link: https://eval.ai/challenge/1710/overview
- Baseline: https://github.com/benjaminrwilson/torchbox3d
- Motion Forecasting
- Challenge Link: https://eval.ai/challenge/1719/overview
- Argoverse 1
- Stereo
- Challenge Link: https://eval.ai/challenge/1704/overview

## TL;DR

- Install the API: `bash conda/install.sh`
- Read the [instructions](DOWNLOAD.md) to download the data.

## Overview

- [Setup](#setup)
- [Datasets](#datasets)
- [Testing](#testing)
- [Contributing](#contributing)
- [Citing](#citing)
- [License](#license)

## Getting Started

Please see the [Argoverse User Guide](https://argoverse.github.io/av2-api/).
### Setup

The easiest way to install the API is via [conda](https://docs.conda.io/en/latest/) by running the following command:

```bash
bash conda/install.sh
```

Additional information can be found in the: [INSTALL README](conda/INSTALL.md).

### Datasets

The _Argoverse 2_ family consists of **four** distinct datasets:

| Dataset Name | Scenarios | Camera Imagery | Lidar| Maps | Additional Information|
| ---------------| --------: | :------------: | :--: | :--: | :--------------------:|
| Sensor | 1,000 | :white_check_mark: | :white_check_mark: | :white_check_mark: | [Sensor Dataset README](src/av2/datasets/sensor/README.md) |
| Lidar | 20,000 | | :white_check_mark: | :white_check_mark: | [Lidar Dataset README](src/av2/datasets/lidar/README.md) |
| Motion Forecasting | 250,000 | | | :white_check_mark: | [Motion Forecasting Dataset README](src/av2/datasets/motion_forecasting/README.md) |
| Map Change (Trust, but Verify) | 1,045 | :white_check_mark: | :white_check_mark: | :white_check_mark: | [Map Change Dataset README](src/av2/datasets/tbv/README.md) |

## Supported Datasets
Please see [DOWNLOAD.md](DOWNLOAD.md) for detailed instructions on how to download each dataset.

- Argoverse 2 (AV2)
- [Sensor](https://argoverse.github.io/av2-api/datasets/sensor.html)
- [Lidar](https://argoverse.github.io/av2-api/datasets/lidar.html)
- [Motion Forecasting](https://argoverse.github.io/av2-api/datasets/motion_forecasting.html)
- Trust, but Verify (TbV)
- [Map Change Detection](https://argoverse.github.io/av2-api/datasets/map_change_detection.html)
<div align="center">
<h4> <a href="src/av2/datasets/sensor/README.md"> Sensor Dataset </a> </h4>
<img src="https://user-images.githubusercontent.com/29715011/158742778-557f31a4-569d-44aa-a032-99836094dc97.gif" height="150">
<img src="https://user-images.githubusercontent.com/29715011/158742776-069501c4-8dd4-4f9d-ac8c-f0421f855607.gif" height="150">
<img src="https://user-images.githubusercontent.com/29715011/158739736-fe876299-23da-46ed-98ce-173f938d1702.gif" height="150">
<img src="https://user-images.githubusercontent.com/29715011/158739767-886e1c2f-4613-495d-9204-a7b4813af16d.gif" height="150">
</div>

## Supported Tasks
<div align="center">
<h4> <a href="src/av2/datasets/lidar/README.md"> Lidar Dataset </a> </h4>
<img src="https://user-images.githubusercontent.com/29715011/158715494-472339d1-a5d5-4d33-8fcf-3455c0d78d27.gif" height="150">
<img src="https://user-images.githubusercontent.com/29715011/158715496-f439ccad-71af-4880-8b43-ade7b6c8f333.gif" height="150">
<img src="https://user-images.githubusercontent.com/29715011/158715498-23d7a11f-12a1-4aeb-b9af-dbced217b340.gif" height="150">
<img src="https://user-images.githubusercontent.com/29715011/158715497-d1603423-c32f-4cf0-ab1e-6bbc9c458535.gif" height="150">
</div>

- Argoverse 2 (AV2)
- [3D Object Detection](https://argoverse.github.io/av2-api/tasks/3d_object_detection.html)
- [3D Scene Flow](https://argoverse.github.io/av2-api/tasks/3d_scene_flow.html)
- [Motion Forecasting](https://argoverse.github.io/av2-api/tasks/motion_forecasting.html)

<div align="center">
<h4> <a href="src/av2/datasets/motion_forecasting/README.md"> Motion Forecasting Dataset </a> </h4>
<img src="https://user-images.githubusercontent.com/29715011/158486284-1a0df794-ee0a-4ae6-a320-0dd0d1daad06.gif" height="150">
<img src="https://user-images.githubusercontent.com/29715011/158486286-e734e654-b879-4994-a129-9957cc591af4.gif" height="150">
<img src="https://user-images.githubusercontent.com/29715011/158486288-5e7c0971-de0c-4ff5-bea7-76f7922dd1e0.gif" height="150">
</div>

<div align="center">
<h4> <a href="src/av2/datasets/tbv/README.md"> Map Change Dataset (Trust, but Verify) </a> </h4>
<img src="https://user-images.githubusercontent.com/29715011/159289930-a58147c3-c6ed-4b4e-a2a8-e23c23feb43e.gif" height="150">
<img src="https://user-images.githubusercontent.com/29715011/159289891-8aae12e7-136a-4f44-bbc1-8ef93f01e23e.gif" height="150">
<img src="https://user-images.githubusercontent.com/29715011/159152108-3c3001fe-ec7c-48fd-8c08-4a473affb2a3.gif" height="150">
<img src="https://user-images.githubusercontent.com/29715011/159152102-27c04180-9ca4-4725-be81-95ee6858d367.gif" height="150">
</div>

### Map API

Please refer to the [map README](src/av2/map/README.md) for additional details about the common format for vector and
raster maps that we employ across all AV2 datasets.

## Compatibility Matrix

| `Python Version` | `linux` | `macOS` | `windows` |
| ------------- | :----------------: | :----------------: | :----------------: |
| `3.8` | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| `3.9` | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| `3.10` | :white_check_mark: | :white_check_mark: | :white_check_mark: |

## Testing

All incoming pull requests are tested using [nox](https://nox.thea.codes/en/stable/) as
part of the CI process. This ensures that the latest version of the API is always stable on all supported platforms. You
can run the full suite of automated checks and tests locally using the following command:

```bash
nox -r
```

## Contributing

Have a cool feature you'd like to add? Found an unhandled corner case? The Argoverse team welcomes contributions from
the open source community - please open a PR using the following [template](.github/pull_request_template.md)!

## Citing

Expand All @@ -44,7 +133,7 @@ Please use the following citation when referencing the [Argoverse 2](https://dat
}
```

Use the following citation when referencing the [Trust, but Verify](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/6f4922f45568161a8cdf4ad2299f6d23-Paper-round2.pdf) _Map Change Detection_ Dataset:
Use the following citation when referencing the [Argoverse 2](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/6f4922f45568161a8cdf4ad2299f6d23-Paper-round2.pdf) _Map Change_ Dataset:
```BibTeX
@INPROCEEDINGS { TrustButVerify,
author = {John Lambert and James Hays},
Expand All @@ -53,3 +142,8 @@ Use the following citation when referencing the [Trust, but Verify](https://data
year = {2021}
}
```

## License

All code provided within this repository is released under the **MIT license** and bound by the _Argoverse_ **terms of use**,
please see [LICENSE](LICENSE) and [NOTICE](NOTICE) for additional details.
33 changes: 33 additions & 0 deletions conda/INSTALL.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
# Installation

We _highly_ recommend using `conda` with the `conda-forge` channel for package management.

## Install `conda`

You will need to install `conda` on your machine. We recommend to install the `conda-forge` version of `conda` found at https://github.com/conda-forge/miniforge#install.

## Install `av2`

Simply run:

```bash
bash install.sh
```

which will install _all_ of the necessary dependencies in a conda environment named `av2`.

To activate your environment (i.e., update your system paths), run:

```bash
conda activate av2
```

## FAQ

> Why manage dependencies in `conda` instead of `pip`?

`conda` enables package management outside of the `python` ecosystem. This enables us to specify all necessary dependencies in `environment.yml`. Further, gpu-based packages (e.g., `torch`) are handled better through `conda`.

> Why `conda-forge`?

`conda-forge` is a community-driven channel of conda recipes. It includes a large number of packages which can all be properly tracked in the `conda` resolver allowing for consistent environments without conflicts.
25 changes: 0 additions & 25 deletions guide/book.toml

This file was deleted.

Loading