Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add detection eval optimizations. #236

Merged
merged 1 commit into from
Jun 7, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
79 changes: 37 additions & 42 deletions argoverse/evaluation/detection/eval.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,50 +60,48 @@
"""
import argparse
import logging
import os
import multiprocessing as mp
from collections import defaultdict
from multiprocessing import Pool
from dataclasses import dataclass
from pathlib import Path
from typing import DefaultDict, List
from typing import DefaultDict, Dict, List, Optional

import numpy as np
import pandas as pd
from tqdm.contrib.concurrent import process_map

from argoverse.evaluation.detection.constants import N_TP_ERRORS, SIGNIFICANT_DIGITS, STATISTIC_NAMES
from argoverse.evaluation.detection.utils import DetectionCfg, accumulate, calc_ap, plot
from argoverse.evaluation.detection.utils import AccumulateJob, DetectionCfg, accumulate, calc_ap, plot
from argoverse.map_representation.map_api import ArgoverseMap

logger = logging.getLogger(__name__)


@dataclass
class DetectionEvaluator:
"""Instantiates a DetectionEvaluator object for evaluation."""

def __init__(
self,
dt_root_fpath: Path,
gt_root_fpath: Path,
figs_fpath: Path,
cfg: DetectionCfg = DetectionCfg(),
num_procs: int = -1,
) -> None:
"""
Args:
dt_fpath_root: Path to the folder which contains the detections.
gt_fpath_root: Path to the folder which contains the split of logs.
figs_fpath: Path to the folder which will contain the output figures.
cfg: Detection configuration settings.
num_procs: Number of processes among which to subdivide work.
Specifying -1 will use one process per available core
"""
self.dt_root_fpath = dt_root_fpath
self.gt_root_fpath = gt_root_fpath
self.figs_fpath = figs_fpath
self.cfg = cfg
self.num_procs = os.cpu_count() if num_procs == -1 else num_procs
self.avm = (
ArgoverseMap(self.cfg.map_root) if self.cfg.eval_only_roi_instances else None
) # map is only required if using Region of Interest (ROI) information to filter objects
"""A DetectionEvaluator object for evaluation.

Args:
dt_fpath_root: Path to the folder which contains the detections.
gt_fpath_root: Path to the folder which contains the split of logs.
figs_fpath: Path to the folder which will contain the output figures.
cfg: Detection configuration settings.
num_procs: Number of processes among which to subdivide work.
Specifying -1 will use one process per available core
"""

dt_root_fpath: Path
gt_root_fpath: Path
figs_fpath: Path
cfg: DetectionCfg = DetectionCfg()
num_procs: int = -1

avm: Optional[ArgoverseMap] = (
ArgoverseMap(cfg.map_root) if cfg.eval_only_roi_instances else None
) # map is only required if using Region of Interest (ROI) information to filter objects

def __post_init__(self) -> None:
self.num_procs = mp.cpu_count() if self.num_procs == -1 else self.num_procs

def evaluate(self) -> pd.DataFrame:
"""Evaluate detection output and return metrics. The multiprocessing
Expand All @@ -119,29 +117,28 @@ def evaluate(self) -> pd.DataFrame:
gt_fpaths = list(self.gt_root_fpath.glob("*/per_sweep_annotations_amodal/*.json"))

assert len(dt_fpaths) == len(gt_fpaths)
data: DefaultDict[str, np.ndarray] = defaultdict(list)
data: DefaultDict[str, List[np.ndarray]] = defaultdict(list)
cls_to_ninst: DefaultDict[str, int] = defaultdict(int)

jobs = [AccumulateJob(self.dt_root_fpath, gt_fpath, self.cfg, self.avm) for gt_fpath in gt_fpaths]
if self.num_procs == 1:
accum = [accumulate(self.dt_root_fpath, gt_fpath, self.cfg, self.avm) for gt_fpath in gt_fpaths]

accum = [accumulate(job) for job in jobs]
else:
args = [(self.dt_root_fpath, gt_fpath, self.cfg, self.avm) for gt_fpath in gt_fpaths]
with Pool(self.num_procs) as p:
accum = p.starmap(accumulate, args)
chunksize = max(1, len(jobs) // self.num_procs)
accum = process_map(accumulate, jobs, max_workers=self.num_procs, chunksize=chunksize)

for frame_stats, frame_cls_to_inst in accum:
for cls_name, cls_stats in frame_stats.items():
data[cls_name].append(cls_stats)
for cls_name, num_inst in frame_cls_to_inst.items():
cls_to_ninst[cls_name] += num_inst

data = defaultdict(np.ndarray, {k: np.vstack(v) for k, v in data.items()})
aggregated_data = {k: np.vstack(v) for k, v in data.items()}

init_data = {dt_cls: self.cfg.summary_default_vals for dt_cls in self.cfg.dt_classes}
summary = pd.DataFrame.from_dict(init_data, orient="index", columns=STATISTIC_NAMES)
summary_update = pd.DataFrame.from_dict(
self.summarize(data, cls_to_ninst), orient="index", columns=STATISTIC_NAMES
self.summarize(aggregated_data, cls_to_ninst), orient="index", columns=STATISTIC_NAMES
)

summary.update(summary_update)
Expand All @@ -152,7 +149,7 @@ def evaluate(self) -> pd.DataFrame:
return summary

def summarize(
self, data: DefaultDict[str, np.ndarray], cls_to_ninst: DefaultDict[str, int]
self, data: Dict[str, np.ndarray], cls_to_ninst: DefaultDict[str, int]
) -> DefaultDict[str, List[float]]:
"""Calculate and print the detection metrics.

Expand Down Expand Up @@ -205,8 +202,6 @@ def summarize(
cds = ap * tp_scores.mean()

summary[cls_name] = [ap, *tp_metrics, cds]

logger.info(f"summary = {summary}")
return summary


Expand Down
30 changes: 23 additions & 7 deletions argoverse/evaluation/detection/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
import logging
import os
from collections import defaultdict
from dataclasses import dataclass
from enum import Enum, auto
from pathlib import Path
from typing import DefaultDict, List, NamedTuple, Optional, Tuple, Union
Expand Down Expand Up @@ -99,15 +100,28 @@ class DetectionCfg(NamedTuple):
map_root: _PathLike = Path(__file__).parent.parent.parent.parent / "map_files" # argoverse-api/map_files


def accumulate(
dt_root_fpath: Path, gt_fpath: Path, cfg: DetectionCfg, avm: Optional[ArgoverseMap]
) -> Tuple[DefaultDict[str, np.ndarray], DefaultDict[str, int]]:
"""Accumulate the true/false positives (boolean flags) and true positive errors for each class.
@dataclass
class AccumulateJob:
"""Dataclass args for running `accumulate`.

Args:
dt_root_fpath: Detections root folder file path.
gt_fpath: Ground truth file path.
cfg: Detection configuration.
avm: Argoverse map object.
"""

dt_root_fpath: Path
gt_fpath: Path
cfg: DetectionCfg
avm: Optional[ArgoverseMap]


def accumulate(job: AccumulateJob) -> Tuple[DefaultDict[str, np.ndarray], DefaultDict[str, int]]:
tagarwal-argoai marked this conversation as resolved.
Show resolved Hide resolved
tagarwal-argoai marked this conversation as resolved.
Show resolved Hide resolved
"""Accumulate the true/false positives (boolean flags) and true positive errors for each class.

Args:
job: Accumulate job.

Returns:
cls_to_accum: Class to accumulated statistics dictionary of shape |C| -> (N, K + S) where C
Expand All @@ -116,8 +130,10 @@ def accumulate(
cls_to_ninst: Mapping of shape |C| -> (1,) the class names to the number of instances in the ground
truth dataset.
"""
dt_root_fpath, gt_fpath, cfg, avm = job.dt_root_fpath, job.gt_fpath, job.cfg, job.avm

log_id = gt_fpath.parents[1].stem
logger.info(f"log_id = {log_id}")
logger.debug(f"log_id = {log_id}")
ts = int(gt_fpath.stem.split("_")[-1])

dt_fpath = dt_root_fpath / f"{log_id}/per_sweep_annotations_amodal/" f"tracked_object_labels_{ts}.json"
Expand Down Expand Up @@ -154,8 +170,8 @@ def accumulate(
)
gt_filtered = remove_duplicate_instances(gt_filtered, cfg)

logger.info(f"{dt_filtered.shape[0]} detections")
logger.info(f"{gt_filtered.shape[0]} ground truth")
logger.debug(f"{dt_filtered.shape[0]} detections")
logger.debug(f"{gt_filtered.shape[0]} ground truth")
if dt_filtered.shape[0] > 0:
ranked_dts, ranked_scores = rank(dt_filtered)

Expand Down
1 change: 1 addition & 0 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,6 +67,7 @@
"scipy>=1.4.0",
"shapely",
"sklearn",
"tqdm",
"typing_extensions",
],
# for older pip version, use with --process-dependency-links
Expand Down
5 changes: 3 additions & 2 deletions tests/test_eval_detection.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
from argoverse.data_loading.pose_loader import get_city_SE3_egovehicle_at_sensor_t
from argoverse.evaluation.detection.eval import DetectionEvaluator
from argoverse.evaluation.detection.utils import (
AccumulateJob,
AffFnType,
DetectionCfg,
DistFnType,
Expand Down Expand Up @@ -200,13 +201,13 @@ def test_wrap_angle() -> None:
def test_accumulate() -> None:
"""Verify that the accumulate function matches known output for a self-comparison."""
cfg = DetectionCfg(eval_only_roi_instances=False)
# compare a set of labels to itself
cls_to_accum, cls_to_ninst = accumulate(
job = AccumulateJob(
TEST_DATA_LOC / "detections",
TEST_DATA_LOC / "detections/1/per_sweep_annotations_amodal/tracked_object_labels_0.json",
cfg,
avm=None, # ArgoverseMap instance not required when not using ROI info in evaluation
)
cls_to_accum, cls_to_ninst = accumulate(job)
# ensure the detections match at all thresholds, have 0 TP errors, and have AP = 1
expected_ATE = 0.0
expected_ASE = 0.0
Expand Down