Skip to content

Commit

Permalink
(Typo): Update README.md (#5655)
Browse files Browse the repository at this point in the history
# Description
Corrected the spelling mistakes and increased the grammatical
continuity.


**Type of change**
These changes improve the quality of the documentations. They do not
affect the system in any way.

---------

Co-authored-by: David Berenstein <[email protected]>
  • Loading branch information
kaleaditya779 and davidberenstein1957 authored Nov 6, 2024
1 parent 74ec465 commit 6c83e87
Showing 1 changed file with 2 additions and 2 deletions.
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -77,11 +77,11 @@ We are an open-source community-driven project and we love to hear from you. Her
The community uses Argilla to create amazing open-source [datasets](https://huggingface.co/datasets?library=library:argilla&sort=trending) and [models](https://huggingface.co/models?other=distilabel).

- [Cleaned UltraFeedback dataset](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned) used to fine-tune the [Notus](https://huggingface.co/argilla/notus-7b-v1) and [Notux](https://huggingface.co/argilla/notux-8x7b-v1) models. The original UltraFeedback dataset was curated using Argilla UI filters to find and report a bug in the original data generation code. Based on this data curation process, Argilla built this new version of the UltraFeedback dataset and fine-tuned Notus, outperforming Zephyr on several benchmarks.
- [distilabeled Intel Orca DPO dataset](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs) used to fine-tune the [improved OpenHermes model](https://huggingface.co/argilla/distilabeled-OpenHermes-2.5-Mistral-7B). This dataset was built by combining human curation in Argilla with AI feedback from distilabel, leading to an improved version of the Intel Orca dataset and outperforming models fine-tuned on the original dataset.
- [distilabel Intel Orca DPO dataset](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs) used to fine-tune the [improved OpenHermes model](https://huggingface.co/argilla/distilabeled-OpenHermes-2.5-Mistral-7B). This dataset was built by combining human curation in Argilla with AI feedback from distilabel, leading to an improved version of the Intel Orca dataset and outperforming models fine-tuned on the original dataset.

### Examples Use cases

AI teams from companies like [the Red Cross](https://510.global/), [Loris.ai](https://loris.ai/) and [Prolific](https://www.prolific.com/) use Argilla to improve the quality and efficiency of AI projects. They shared their experiences in our [AI community meetup](https://lu.ma/embed-checkout/evt-IQtRiSuXZCIW6FB).
AI teams from organizations such as the [Red Cross](https://510.global/), [Loris.ai](https://loris.ai/) and [Prolific](https://www.prolific.com/) use Argilla to improve the quality and efficiency of AI projects. They shared their experiences in our [AI community meetup](https://lu.ma/embed-checkout/evt-IQtRiSuXZCIW6FB).

- AI for good: [the Red Cross presentation](https://youtu.be/ZsCqrAhzkFU?feature=shared) showcases how the Red Cross domain experts and AI team collaborated by classifying and redirecting requests from refugees of the Ukrainian crisis to streamline the support processes of the Red Cross.
- Customer support: during [the Loris meetup](https://youtu.be/jWrtgf2w4VU?feature=shared) they showed how their AI team uses unsupervised and few-shot contrastive learning to help them quickly validate and gain labeled samples for a huge amount of multi-label classifiers.
Expand Down

0 comments on commit 6c83e87

Please sign in to comment.