Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[microNPU] Move optimization passes to be a module pass and ensure they are running #9831

Merged
merged 1 commit into from
Jan 20, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 21 additions & 13 deletions python/tvm/relay/backend/contrib/ethosu/codegen.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,13 +18,13 @@

import tvm
from tvm import relay
from tvm import ir
from tvm.relay.backend.contrib.ethosu.tir.compiler import lower_to_tir
from tvm.relay.backend.contrib.ethosu.tir.scheduler import copy_constants
from tvm.relay.backend.contrib.ethosu.legalize import LegalizeEthosU
from tvm.relay.backend.contrib.ethosu import tir_to_cs_translator
from tvm.relay.backend.contrib.ethosu import util
from tvm.relay.expr_functor import ExprMutator
from tvm.ir.transform import Pass

# pylint: disable=unused-import
from tvm.relay.backend.contrib.ethosu.op import op_attrs
Expand Down Expand Up @@ -109,13 +109,11 @@ def visit_call(self, call: tvm.relay.expr.Call) -> tvm.relay.expr.Call:
return new_call


@relay.transform.function_pass(opt_level=1, name="LUTsOptimizer")
class LUTsOptimizer(Pass):
@ir.transform.module_pass(opt_level=1, name="LUTsOptimizer")
class LUTsOptimizer:
"""Register LUTsOptimizer as a relay pass."""

def transform_function(
self, func: tvm.relay.function.Function, mod: tvm.IRModule, _
) -> tvm.IRModule:
def transform_module(self, mod: tvm.ir.IRModule, _) -> tvm.IRModule:
"""Visit relay nodes in the given module.
Parameters
Expand All @@ -131,7 +129,13 @@ def transform_function(
New module with optimized LUTs.
"""
assert len(mod.functions.items()) == 1, "Module can only contain one function."
return OptimizeLUTs().visit(func)
global_var, func = mod.functions.items()[0]
optimized_func = OptimizeLUTs().visit(func)
mod.update_func(global_var, optimized_func)
return mod

def __call__(self, *args, **kwargs):
pass


class LayoutOptimization(ExprMutator):
Expand Down Expand Up @@ -247,19 +251,23 @@ def visit_call(self, call: tvm.relay.expr.Call) -> tvm.relay.expr.Call:
return super().visit_call(call)


@relay.transform.function_pass(opt_level=1, name="LayoutOptimizer")
class LayoutOptimizer(Pass):
@ir.transform.module_pass(opt_level=1, name="LayoutOptimizer")
class LayoutOptimizer:
"""Register LayoutOptimizer as a Relay pass."""

def transform_function(
self, func: tvm.relay.function.Function, mod: tvm.IRModule, _
) -> tvm.IRModule:
def transform_module(self, mod: tvm.ir.IRModule, _) -> tvm.IRModule:
"""A pass to optimize the layout of NPU operations. If both the
producer and consumer of a tensor are NPU operators, then the
layout is converted from NHWC to NHCWB16 as this is the layout NPU
uses internally."""
assert len(mod.functions.items()) == 1, "Module can only contain one function."
return LayoutOptimization().visit(func)
global_var, func = mod.functions.items()[0]
optimized_func = LayoutOptimization().visit(func)
mod.update_func(global_var, optimized_func)
return mod

def __call__(self, *args, **kwargs):
pass


@tvm._ffi.register_func("relay.ext.ethos-u.constant_updater")
Expand Down
80 changes: 55 additions & 25 deletions tests/python/contrib/test_ethosu/test_layout_optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,14 +33,17 @@
from tvm import relay
from tvm.relay.op.contrib.ethosu import partition_for_ethosu
from tvm.relay.backend.contrib.ethosu.codegen import LayoutOptimizer
from tvm.relay.backend.contrib.ethosu.codegen import relay_to_tir_func

from . import infra


def _run_pass(expr, relay_pass):
"""Create IRModule and run Relay pass."""
def _optimize(expr, optimize=True):
"""Create IRModule and run layout optimizer pass."""
mod = tvm.IRModule.from_expr(expr)
mod = relay_pass(mod)
mod = relay.transform.InferType()(mod)
if optimize:
mod = LayoutOptimizer()(mod)
entry = mod["main"]
return entry if isinstance(expr, relay.Function) else entry.body

Expand Down Expand Up @@ -111,8 +114,8 @@ def get_graph():
)
return relay.Function(relay.analysis.free_vars(x), x)

a = _run_pass(get_graph(), LayoutOptimizer())
b = _run_pass(get_graph(), relay.transform.InferType())
a = _optimize(get_graph())
b = _optimize(get_graph(), optimize=False)
_assert_structural_equal(a, b)


Expand Down Expand Up @@ -144,8 +147,8 @@ def get_graph(get_expected=False):
)
return relay.Function(relay.analysis.free_vars(x), x)

a = _run_pass(get_graph(), LayoutOptimizer())
b = _run_pass(get_graph(get_expected=True), relay.transform.InferType())
a = _optimize(get_graph())
b = _optimize(get_graph(get_expected=True), optimize=False)
_assert_structural_equal(a, b)


Expand Down Expand Up @@ -176,8 +179,8 @@ def get_graph(get_expected=False):
)
return relay.Function(relay.analysis.free_vars(x), x)

a = _run_pass(get_graph(), LayoutOptimizer())
b = _run_pass(get_graph(get_expected=True), relay.transform.InferType())
a = _optimize(get_graph())
b = _optimize(get_graph(get_expected=True), optimize=False)
_assert_structural_equal(a, b)


Expand Down Expand Up @@ -222,8 +225,8 @@ def get_graph():
)
return relay.Function(relay.analysis.free_vars(conv_2), conv_2)

a = _run_pass(get_graph(), LayoutOptimizer())
b = _run_pass(get_graph(), relay.transform.InferType())
a = _optimize(get_graph())
b = _optimize(get_graph(), optimize=False)
_assert_structural_equal(a, b)


Expand Down Expand Up @@ -268,8 +271,8 @@ def get_graph():
)
return relay.Function(relay.analysis.free_vars(conv_2), conv_2)

a = _run_pass(get_graph(), LayoutOptimizer())
b = _run_pass(get_graph(), relay.transform.InferType())
a = _optimize(get_graph())
b = _optimize(get_graph(), optimize=False)
_assert_structural_equal(a, b)


Expand Down Expand Up @@ -322,8 +325,8 @@ def get_graph():
)
return relay.Function(relay.analysis.free_vars(pool_3), pool_3)

a = _run_pass(get_graph(), LayoutOptimizer())
b = _run_pass(get_graph(), relay.transform.InferType())
a = _optimize(get_graph())
b = _optimize(get_graph(), optimize=False)
_assert_structural_equal(a, b)


Expand Down Expand Up @@ -368,8 +371,8 @@ def get_graph():
)
return relay.Function(relay.analysis.free_vars(conv), conv)

a = _run_pass(get_graph(), LayoutOptimizer())
b = _run_pass(get_graph(), relay.transform.InferType())
a = _optimize(get_graph())
b = _optimize(get_graph(), optimize=False)
_assert_structural_equal(a, b)


Expand Down Expand Up @@ -413,8 +416,8 @@ def get_graph(get_expected=False):
concat = relay.concatenate(poolings, axis=0)
return relay.Function(relay.analysis.free_vars(concat), concat)

a = _run_pass(get_graph(), LayoutOptimizer())
b = _run_pass(get_graph(get_expected=True), relay.transform.InferType())
a = _optimize(get_graph())
b = _optimize(get_graph(get_expected=True), optimize=False)
_assert_structural_equal(a, b)


Expand Down Expand Up @@ -467,8 +470,8 @@ def get_graph(get_expected=False):
)
return relay.Function(relay.analysis.free_vars(add_3), add_3)

a = _run_pass(get_graph(), LayoutOptimizer())
b = _run_pass(get_graph(get_expected=True), relay.transform.InferType())
a = _optimize(get_graph())
b = _optimize(get_graph(get_expected=True), optimize=False)
_assert_structural_equal(a, b)


Expand Down Expand Up @@ -500,8 +503,8 @@ def get_graph(get_expected=False):
)
return relay.Function(relay.analysis.free_vars(x), x)

a = _run_pass(get_graph(), LayoutOptimizer())
b = _run_pass(get_graph(get_expected=True), relay.transform.InferType())
a = _optimize(get_graph())
b = _optimize(get_graph(get_expected=True), optimize=False)
_assert_structural_equal(a, b)


Expand Down Expand Up @@ -530,8 +533,8 @@ def get_graph(get_expected=False):
)
return relay.Function(relay.analysis.free_vars(x), x)

a = _run_pass(get_graph(), LayoutOptimizer())
b = _run_pass(get_graph(get_expected=True), relay.transform.InferType())
a = _optimize(get_graph())
b = _optimize(get_graph(get_expected=True), optimize=False)
_assert_structural_equal(a, b)


Expand Down Expand Up @@ -619,5 +622,32 @@ def representative_dataset():
_compile_and_compare_model(create_model(), ifm_shape, dtype)


def test_layout_optimizer_runs_in_compilation_pipeline():
"""Checks that the layout optimization pass runs as part of the NPU compilation
pipeline."""

def get_graph():
x = relay.var("x", shape=(1, 4, 4, 4), dtype="int8")
for _ in range(2):
x = relay.nn.max_pool2d(x, layout="NHWC")

func = relay.Function(relay.analysis.free_vars(x), x)
return tvm.IRModule.from_expr(func)

mod = get_graph()
mod = partition_for_ethosu(mod)

external_gv_name = mod["main"].body.op.name_hint
external_func = mod[external_gv_name]
prim_func = relay_to_tir_func(external_func)

# Check for hints in the TIR prim func that the layout optimization pass has ran
ops = prim_func.body.body.seq
max_pool1, max_pool2 = ops

assert str(max_pool1.value.args[31]) == '"NHCWB16"'
assert str(max_pool2.value.args[14]) == '"NHCWB16"'


if __name__ == "__main__":
pytest.main([__file__] + sys.argv[1:])
38 changes: 38 additions & 0 deletions tests/python/contrib/test_ethosu/test_lut_optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,9 +21,16 @@

pytest.importorskip("ethosu.vela")

import tensorflow as tf
import numpy as np

import tvm
from tvm import relay
from tvm.relay.backend.contrib.ethosu.codegen import LUTsOptimizer
from tvm.relay.backend.contrib.ethosu.codegen import relay_to_tir_func
from tvm.relay.op.contrib.ethosu import partition_for_ethosu

from .test_codegen import _get_tflite_graph
from . import infra


Expand Down Expand Up @@ -59,6 +66,7 @@ def after():
return mod

mod = LUTsOptimizer()(before())
mod = relay.transform.InferType()(mod)

assert tvm.ir.structural_equal(mod, after())

Expand Down Expand Up @@ -91,5 +99,35 @@ def after():
return mod

mod = LUTsOptimizer()(before())
mod = relay.transform.InferType()(mod)

assert tvm.ir.structural_equal(mod, after())


def test_lut_optimizer_runs_in_compilation_pipeline():
"""Test that the LUT optimization pass runs as part of the NPU compilation pipeline."""
ifm_shape = (1, 4, 4, 4)

@tf.function
def get_graph(x):
weight1 = tf.constant(np.random.uniform(size=(1, 1, 4, 4)), dtype=tf.float32)
op = tf.nn.conv2d(x, weight1, (1, 1), "VALID")
op = tf.nn.tanh(op)
weight2 = tf.constant(np.random.uniform(size=(1, 1, 4, 1)), dtype=tf.float32)
op = tf.nn.depthwise_conv2d(op, weight2, (1, 1, 1, 1), "VALID")
return tf.nn.tanh(op)

mod, _ = _get_tflite_graph(get_graph, [ifm_shape])
mod = partition_for_ethosu(mod)

external_gv_name = mod["main"].body.op.name_hint
external_func = mod[external_gv_name]
prim_func = relay_to_tir_func(external_func)

# Check for hints in the TIR prim func that the LUT optimization pass has ran.
# If the module was optimized, there should be no identity operations.
def check_identity(stmt):
if isinstance(stmt, tvm.tir.expr.Call):
assert stmt.args[0] != "ethosu_identity"

tvm.tir.stmt_functor.post_order_visit(prim_func.body, check_identity)