Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Frontend][PaddlePaddle] Add operators of interploate/flatten and modify try_infer_value #9459

Merged
merged 9 commits into from
Nov 8, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions python/tvm/relay/frontend/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -578,14 +578,15 @@ def infer_value_simulated(input_val, params):
return output_value


def try_infer_value(val, on_success=None, on_failure=None):
def try_infer_value(val, on_success=None, on_failure=None, parameters=None):
"""Try running infer_value on the input val, and if successful, return the inferred value or
pass it to on_success callback if provided. Otherwise, run on_failure callback if it is
provided, or return the input val as output. In each case, the second return value
indicates whether infer_value has succeeded or not.
"""
try:
ret = infer_value(val, {}).numpy()
params = parameters if parameters is not None else {}
ret = infer_value(val, params).numpy()
if on_success:
return on_success(ret), True
return ret, True
Expand Down
147 changes: 136 additions & 11 deletions python/tvm/relay/frontend/paddlepaddle.py
Original file line number Diff line number Diff line change
Expand Up @@ -382,10 +382,12 @@ def convert_expand(g, op, block):
x = g.get_node(op.input("X")[0])
if op.input("Shape"):
sizes = g.get_node(op.input("Shape")[0])
sizes = try_infer_value(sizes, g.get_params())[0]
else:
sizes = op.attr("shape")

if isinstance(sizes, _expr.Expr):
sizes = try_infer_value(sizes, parameters=g.get_params())[0]

if isinstance(sizes, np.ndarray):
sizes = sizes.tolist()

Expand Down Expand Up @@ -447,10 +449,11 @@ def convert_fill_constant(g, op, block):
value = _expr.const(value).astype(dtype)
if "ValueTensor" in op.input_names and op.input("ValueTensor"):
shape = g.get_node(op.input("ValueTensor")[0])
shape = try_infer_value(shape, g.get_params())[0]
if "ShapeTensor" in op.input_names and op.input("ShapeTensor"):
shape = g.get_node(op.input("ShapeTensor")[0])
shape = try_infer_value(shape, g.get_params())[0]

if isinstance(shape, _expr.Expr):
shape = try_infer_value(shape, parameters=g.get_params())[0]

if isinstance(shape, np.ndarray):
shape = shape.tolist()
Expand All @@ -459,6 +462,33 @@ def convert_fill_constant(g, op, block):
g.add_node(op.output("Out")[0], out)


def convert_flatten(g, op, block):
"""Operator converter for flatten."""

x = g.get_node(op.input("X")[0])
input_shape = list(infer_shape(x))

start = op.attr("start_axis")
end = op.attr("stop_axis")
ndim = len(input_shape)
if end < 0:
end += ndim
new_shape = [0] * start

new_shape.append(-1)
squeeze_axes = []
for i in range(start + 1, end + 1):
new_shape.append(1)
squeeze_axes.append(i)
for _ in range(end + 1, ndim):
new_shape.append(0)
out = _op.reshape(x, new_shape)
if squeeze_axes:
out = _op.squeeze(out, axis=squeeze_axes)

g.add_node(op.output("Out")[0], out)


def convert_gather(g, op, block):
"""Operator converter for gather."""

Expand Down Expand Up @@ -552,6 +582,99 @@ def convert_hard_swish(g, op, block):
g.add_node(op.output("Out")[0], out)


def convert_interpolate(g, op, block):
"""Operator converter for interpolate."""

def get_interpolate_mode(op):
"""Get parameters for interpolation methods."""

interp_method = op.attr("interp_method")
align_corners = op.attr("align_corners")
align_mode = op.attr("align_mode")

rounding_method = ""
if interp_method == "nearest":
interp_method = "nearest_neighbor"
coordinate_transformation_mode = "asymmetric"
rounding_method = "floor"
elif interp_method == "bilinear":
interp_method = "linear"
if not align_corners and align_mode == 0:
coordinate_transformation_mode = "half_pixel"
else:
if align_corners:
coordinate_transformation_mode = "align_corners"
else:
coordinate_transformation_mode = "asymmetric"
elif interp_method == "bicubic":
interp_method = "cubic"
if align_corners:
coordinate_transformation_mode = "align_corners"
else:
coordinate_transformation_mode = "half_pixel"
else:
msg = "interp_method {} is not supported for PaddlePaddle's interpolate"
raise tvm.error.OpAttributeInvalid(msg.format(interp_method))
return rounding_method, interp_method, coordinate_transformation_mode

layout = op.attr("data_layout")
out_h = op.attr("out_h")
out_w = op.attr("out_w")

x = g.get_node(op.input("X")[0])
x_shape = infer_shape(x)
assert len(x_shape) == 4, "Only 4D input tensor is supported for PaddlePaddle's interpolate"
input_out_size = op.input("OutSize")
input_size_tensor = op.input("SizeTensor")
input_scale = op.input("Scale")
rounding_method, interp_method, coordinate_transformation_mode = get_interpolate_mode(op)

if input_out_size:
# if out_size is a tensor
out_size = g.get_node(input_out_size[0])
out_size, infered = try_infer_value(out_size, parameters=g.get_params())
if infered:
out_size = out_size.tolist()
elif input_size_tensor:
# if out_size is a list of tensor
out_size = list()
for name in input_size_tensor:
size = g.get_node(name)
if len(infer_shape(size)) == 0:
shape = _op.reshape(shape, [-1])
out_size.append(size)
out_size = _op.concatenate(out_size, axis=0)
out_size, infered = try_infer_value(out_size, parameters=g.get_params())
if infered:
out_size = out_size.tolist()
elif input_scale:
# if out_size is not defined, but scale is defined
input_scale = g.get_node(input_scale[0])
input_shape = shape_of(x).astype("float32")
if layout.startswith("NC"):
out_size = _op.strided_slice(input_shape, begin=[2], end=[4]) * input_scale
else:
out_size = _op.strided_slice(input_shape, begin=[1], end=[3]) * input_scale
out_size = out_size.astype("int32")
out_size, infered = try_infer_value(out_size, parameters=g.get_params())
if infered:
out_size = out_size.tolist()
else:
# if out_size is a constant value
out_size = [out_h, out_w]

out = _op.image.resize2d(
x,
size=out_size,
layout=layout,
method=interp_method,
coordinate_transformation_mode=coordinate_transformation_mode,
rounding_method=rounding_method,
cubic_alpha=-0.75,
)
g.add_node(op.output("Out")[0], out)


def convert_layer_norm(g, op, block):
"""Operator converter for layer_norm."""

Expand Down Expand Up @@ -939,18 +1062,16 @@ def convert_reshape(g, op, block):
if input_shape:
new_shape = g.get_node(input_shape[0])
elif input_shape_tensor:
tmp_shape = []
new_shape = []
for shape_name in input_shape_tensor:
shape = g.get_node(shape_name)
if len(infer_shape(shape)) == 0:
shape = _op.reshape(shape, [-1])
if isinstance(shape, _expr.Constant):
tmp_shape.append(shape)
elif isinstance(shape, _expr.Expr):
tmp_shape.append(shape)
else:
tmp_shape.append(_expr.const(np.array(shape).astype("int64")))
new_shape = _op.concatenate(tmp_shape, axis=0)
new_shape.append(shape)
new_shape = _op.concatenate(new_shape, axis=0)
new_shape, infered = try_infer_value(new_shape, parameters=g.get_params())
if infered:
new_shape = new_shape.tolist()
else:
new_shape = op.attr("shape")
out = _op.reshape(data, new_shape)
Expand Down Expand Up @@ -1184,6 +1305,8 @@ def convert_unsqueeze(g, op, block):
"assign_value": convert_assign_value,
"atan": convert_unary_op,
"batch_norm": convert_batch_norm,
"bicubic_interp_v2": convert_interpolate,
"bilinear_interp_v2": convert_interpolate,
"bmm": convert_bmm,
"brelu": convert_brelu,
"cast": convert_cast,
Expand Down Expand Up @@ -1214,6 +1337,7 @@ def convert_unsqueeze(g, op, block):
"feed": convert_feed,
"fill_any_like": convert_fill_any_like,
"fill_constant": convert_fill_constant,
"flatten_contiguous_range": convert_flatten,
"floor": convert_unary_op,
"floor_mod": convert_elementwise_op,
"gather": convert_gather,
Expand Down Expand Up @@ -1243,6 +1367,7 @@ def convert_unsqueeze(g, op, block):
"matmul": convert_matmul,
"matmul_v2": convert_matmul,
"mul": convert_mul,
"nearest_interp_v2": convert_interpolate,
"not_equal": convert_elementwise_op,
"pad1d": convert_padding,
"pad2d": convert_padding,
Expand Down
89 changes: 89 additions & 0 deletions tests/python/frontend/paddlepaddle/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -585,6 +585,24 @@ def forward(self, x, y):
verify_model(ExpandAs(), [x_data, y_data])


@tvm.testing.uses_gpu
def test_forward_flatten():
class Flatten(nn.Layer):
def __init__(self, start_axis=0, stop_axis=-1):
super(Flatten, self).__init__()
self.start_axis = start_axis
self.stop_axis = stop_axis

@paddle.jit.to_static
def forward(self, x):
return paddle.flatten(x, start_axis=self.start_axis, stop_axis=self.stop_axis)

input_data = paddle.rand([2, 3, 4, 5, 2], dtype="float32")
verify_model(Flatten(), input_data=input_data)
verify_model(Flatten(2), input_data=input_data)
verify_model(Flatten(2, -2), input_data=input_data)


@tvm.testing.uses_gpu
def test_forward_gather():
class Gather(nn.Layer):
Expand Down Expand Up @@ -764,6 +782,77 @@ def hard_swish(inputs):
verify_model(hard_swish, input_data=input_data)


@tvm.testing.uses_gpu
def test_forward_interpolate():
class Interpolate(nn.Layer):
def __init__(
self,
mode="nearest",
align_corners=False,
align_mode=0,
data_format="NCHW",
use_scale=False,
use_list=False,
use_const=False,
):
super(Interpolate, self).__init__()
self.mode = mode
self.align_corners = align_corners
self.align_mode = align_mode
self.data_format = data_format
self.use_scale = use_scale
self.use_list = use_list
self.use_const = use_const

@paddle.jit.to_static
def forward(self, x):
size = np.array([15, 19]).astype("int32")
scale = np.array([2.0, 1.0]).astype("float32")
if not self.use_list and not self.use_const:
size = paddle.to_tensor(size)
scale = paddle.to_tensor(scale)
elif not self.use_const:
size0 = paddle.to_tensor(size[0:1])
size = [size0, int(size[1])]
else:
size = size.tolist()
scale = scale.tolist()
if not self.use_scale:
return paddle.nn.functional.interpolate(
x,
size=size,
mode=self.mode,
align_corners=self.align_corners,
align_mode=self.align_mode,
data_format=self.data_format,
)
else:
return paddle.nn.functional.interpolate(
x,
scale_factor=scale,
mode=self.mode,
align_corners=self.align_corners,
align_mode=self.align_mode,
data_format=self.data_format,
)

input_data = paddle.rand([1, 2, 8, 12]).astype("float32")
verify_model(Interpolate(), input_data)
verify_model(Interpolate(use_list=True), input_data)
verify_model(Interpolate(use_scale=True), input_data)
verify_model(Interpolate("bilinear", use_scale=True), input_data)
verify_model(Interpolate("bilinear", use_scale=True, align_corners=True), input_data)
verify_model(
Interpolate(
"bilinear", use_scale=True, align_corners=True, align_mode=1, data_format="NHWC"
),
input_data,
)
verify_model(
Interpolate("bicubic", use_scale=True, align_corners=True, align_mode=1), input_data
)


@tvm.testing.uses_gpu
def test_forward_layer_norm():
@paddle.jit.to_static
Expand Down