Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Torch] Add cast to double, fix flatten conversion #6357

Merged
merged 4 commits into from
Aug 29, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 14 additions & 1 deletion python/tvm/relay/frontend/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -996,12 +996,23 @@ def _impl(inputs, input_types):
return _op.transform.transpose(data, axes)
return _impl


def _flatten():
def _impl(inputs, input_types):
data = inputs[0]
return _op.nn.batch_flatten(data)
start_dim = inputs[1] if len(inputs) > 0 else 0
end_dim = inputs[2] if len(inputs) > 1 else -1

if start_dim == 0 and end_dim == -1:
return _op.transform.reshape(data, (-1,))
if start_dim == 1 and end_dim == -1:
return _op.nn.batch_flatten(data)

raise NotImplementedError("Only support 1d flatten or batch flatten")

return _impl


def _dense():
def _impl(inputs, input_types):
use_bias = isinstance(inputs[0], _expr.Expr)
Expand Down Expand Up @@ -1509,11 +1520,13 @@ def _impl(inputs, input_types):
# this happens when converting upsampling with scale factor
cast_func = {
6: float,
7: float,
3: int,
4: int
}
cast_func_expr = {
6: lambda x: _op.cast(x, "float32"),
7: lambda x: _op.cast(x, "float64"),
3: lambda x: _op.cast(x, "int32"),
4: lambda x: _op.cast(x, "int64"),
}
Expand Down
21 changes: 21 additions & 0 deletions tests/python/frontend/pytorch/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -881,6 +881,21 @@ def forward(self, *args):
verify_model(Reshape1().float().eval(), input_data=input_data)
verify_model(Reshape2().float().eval(), input_data=input_data)


def test_flatten():
class Flatten(Module):
def forward(self, x):
return torch.flatten(x)

class BatchFlatten(Module):
def forward(self, x):
return torch.flatten(x, start_dim=1)

inp = torch.rand((5, 2, 2))
verify_model(Flatten(), input_data=inp)
verify_model(BatchFlatten(), input_data=inp)


def test_forward_transpose():
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10]
Expand Down Expand Up @@ -1311,12 +1326,17 @@ class ToLong(Module):
def forward(self, x):
return x.long()

class ToDouble(Module):
def forward(self, x):
return x.double()

verify_model(ToCPU().eval(), torch.rand((1, 3, 32, 32)))
verify_model(ToFloat().eval(), torch.zeros((1, 3, 32, 32), dtype=torch.int))
verify_model(ToFloat().eval(), torch.tensor(2, dtype=torch.int))
verify_model(ToInt().eval(), torch.zeros((1, 3, 32, 32)))
verify_model(ToInt().eval(), torch.tensor(0.8))
verify_model(ToLong().eval(), torch.tensor(0.8))
verify_model(ToDouble().eval(), torch.tensor(0.8))


def test_adaptive_pool3d():
Expand Down Expand Up @@ -2901,6 +2921,7 @@ def test_forward_pretrained_bert_base_uncased():
test_forward_upsample3d()
test_forward_nms()
test_to()
test_flatten()
test_type_as()
test_forward_functional_pad()
test_forward_zero_pad2d()
Expand Down