Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relay] Support for PyTorch Non-Maximum Suppression #6314

Merged
merged 3 commits into from
Aug 24, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 49 additions & 1 deletion python/tvm/relay/frontend/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@
from ..ty import TupleType, TensorType, Any
from ..loops import while_loop
from .. import transform
from .common import get_relay_op
from .common import AttrCvt, get_relay_op
from .common import infer_shape as _infer_shape
from .common import infer_value as _infer_value
from .common import infer_value_simulated as _infer_value_simulated
Expand Down Expand Up @@ -1811,6 +1811,53 @@ def _impl(inputs, input_types):
return _op.meshgrid(data, indexing="ij")
return _impl


def _nms(prelude):
def _impl(inputs, input_types):
boxes = inputs[0]
scores = inputs[1]
iou_threshold = inputs[2]

# Generate data with shape (1, num_anchors, 5)
scores = AttrCvt(op_name="expand_dims",
extras={'axis': -1, 'num_newaxis': 1})([scores], {})

# Prepare input data for get_valid_counts
data = _op.concatenate([scores, boxes], -1)
data = _op.expand_dims(data, 0, 1)
# Leverage get_valid_counts to sort the data and clear invalid boxes
ct, data, indices = get_relay_op('get_valid_counts')(data,
score_threshold=-1.0,
id_index=-1,
score_index=0)

# Perform Non-Maximum Suppression,
# PyTorch NMS doesn't have parameter top_k and max_output_size
score_index = 0
top_k = max_out_size = -1
nms_ret = get_relay_op('non_max_suppression')(data=data,
valid_count=ct,
indices=indices,
max_output_size=max_out_size,
iou_threshold=iou_threshold,
force_suppress=True,
top_k=top_k,
coord_start=1,
score_index=score_index,
id_index=-1,
return_indices=True,
invalid_to_bottom=False)

# squeeze the two outputs of nms for strided_slice
size = get_relay_op("squeeze")(nms_ret[1], axis=[1])
data_slice = get_relay_op("squeeze")(nms_ret[0], axis=[0])

# strided slice to get the dynamic result
return get_relay_op("strided_slice")(data_slice, begin=_expr.const([0]),
end=size, slice_mode="size")
return _impl


def _pytorch_result_type(dtypes, non_tensor_inputs):
"""This promotes TVM dtypes like PyTorch would"""
import torch
Expand Down Expand Up @@ -2111,6 +2158,7 @@ def _get_convert_map(prelude):
"aten::gather" : _gather(),
"aten::index_select" : _select(),
"aten::index" : _index(),
"torchvision::nms" : _nms(prelude),
}
return convert_map

Expand Down
59 changes: 48 additions & 11 deletions tests/python/frontend/pytorch/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -1428,6 +1428,31 @@ def test_forward_upsample3d():
verify_model(torch.nn.Upsample(scale_factor=2, mode='trilinear', align_corners=True).eval(), inp)


def test_forward_nms():
"""dynamic Non-Maximum Suppression"""
torch.set_grad_enabled(False)
class NonMaxSupression(Module):
def __init__(self, iou_thres):
super().__init__()
self.iou_threshold = iou_thres

def forward(self, *args):
return torchvision.ops.nms(args[0], args[1], self.iou_threshold)

yongwww marked this conversation as resolved.
Show resolved Hide resolved
# Generate random input data
def _gen_rand_inputs(num_boxes):
box_len = 4
boxes = torch.rand(num_boxes, box_len, dtype=torch.float) * 0.5
boxes[:, 2] += boxes[:, 0]
boxes[:, 3] += boxes[:, 1]
scores = torch.rand(num_boxes, dtype=torch.float)
return boxes, scores

for num_boxes, iou_thres in [(10, 0.3), (100, 0.5), (500, 0.9)]:
in_boxes, in_scores = _gen_rand_inputs(num_boxes)
verify_trace_model(NonMaxSupression(iou_thres), [in_boxes, in_scores])

yongwww marked this conversation as resolved.
Show resolved Hide resolved

def test_conv3d():
for ishape in [(1, 32, 16, 16, 16),
(1, 32, 9, 15, 15),
Expand Down Expand Up @@ -1577,32 +1602,43 @@ def test_3d_models():

def verify_script_model(pt_model, ishapes):
script_module = torch.jit.script(pt_model)
verify_model_vm(script_module, ishapes)

input_names = ["i{}".format(idx) for idx, ish in enumerate(ishapes)]
input_shapes = list(zip(input_names, ishapes))

inputs = [torch.randn(shape, dtype=torch.float)
for shape in ishapes]
def verify_trace_model(pt_model, idata):
traced_model = torch.jit.trace(pt_model, idata)
ishapes = [data.shape for data in idata]
verify_model_vm(traced_model, ishapes, idata=idata)

mod, params = relay.frontend.from_pytorch(script_module, input_shapes)

def verify_model_vm(imodel, ishapes, idtype=torch.float, idata=None):
input_model = imodel
input_names = ["i{}".format(idx) for idx, ish in enumerate(ishapes)]
input_shapes = list(zip(input_names, ishapes))
input_data = idata if idata else [torch.randn(shape, dtype=idtype)
for shape in ishapes]
# Compile via VM
mod, params = relay.frontend.from_pytorch(input_model, input_shapes)

executor = relay.create_executor("vm", mod=mod, ctx=tvm.cpu(0),
target="llvm")
evaluator = executor.evaluate()

for name, inp in zip(input_names, inputs):
# Inference
for name, inp in zip(input_names, input_data):
params[name] = inp.numpy()
vm_res = evaluator(**params)

op_res = evaluator(**params)

# Baseline result
with torch.no_grad():
pt_result = pt_model(*inputs)
pt_result = input_model(*input_data)

# Verify the accuracy
if not isinstance(pt_result, torch.Tensor):
tvm_res = op_res.asnumpy().item()
tvm_res = vm_res.asnumpy().item()
assert pt_result == tvm_res
else:
tvm.testing.assert_allclose(op_res.asnumpy(), pt_result.numpy(),
tvm.testing.assert_allclose(vm_res.asnumpy(), pt_result.numpy(),
rtol=1e-5, atol=1e-5)


Expand Down Expand Up @@ -2863,6 +2899,7 @@ def test_forward_pretrained_bert_base_uncased():
test_forward_gather()
test_upsample()
test_forward_upsample3d()
test_forward_nms()
test_to()
test_type_as()
test_forward_functional_pad()
Expand Down