Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Amendments for gradients #5941

Merged
merged 2 commits into from
Jun 30, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 16 additions & 8 deletions python/tvm/relay/op/_tensor_grad.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@ def log2_grad(orig, grad):
"""Returns [grad * 1 / (log(2) * x)]"""
x = orig.args[0]
ones = ones_like(x)
two = const(2.0)
two = const(2.0, dtype=x.checked_type.dtype)
return [grad * ones / (log(two) * x)]


Expand All @@ -78,7 +78,7 @@ def log10_grad(orig, grad):
"""Returns [grad * 1 / (log(10) * x)]"""
x = orig.args[0]
ones = ones_like(x)
ten = const(10.0)
ten = const(10.0, dtype=x.checked_type.dtype)
return [grad * ones / (log(ten) * x)]


Expand Down Expand Up @@ -175,8 +175,9 @@ def exp_grad(orig, grad):
@register_gradient("sqrt")
def sqrt_grad(orig, grad):
"""Returns [grad * 0.5 * (x ^ -0.5)]"""
a = const(0.5) # (TODO) type?
return [grad * a * power(orig.args[0], negative(a))]
x = orig.args[0]
a = const(0.5, dtype=x.checked_type.dtype)
return [grad * a * power(x, negative(a))]


@register_gradient("sigmoid")
Expand Down Expand Up @@ -261,6 +262,13 @@ def collapse_sum_like_grad(orig, grad):
return [broadcast_to_like(grad, x), zeros_like(y)]


@register_gradient("collapse_sum_to")
def collapse_sum_to_grad(orig, grad):
"""Returns [broadcast_to_like(grad, x), 0]"""
x, y = orig.args
return [broadcast_to_like(grad, x), zeros_like(y)]


@register_gradient("abs")
def abs_grad(orig, grad):
"""Returns grad * (select(x < 0, -1, 1))."""
Expand All @@ -284,8 +292,8 @@ def clip_grad(orig, grad):
x = orig.args[0]
a_min = orig.attrs.get_int("a_min")
a_max = orig.attrs.get_int("a_max")
a_mins = broadcast_to_like(const(a_min), x)
a_maxs = broadcast_to_like(const(a_max), x)
a_mins = broadcast_to_like(const(a_min, dtype=x.checked_type.dtype), x)
a_maxs = broadcast_to_like(const(a_max, dtype=x.checked_type.dtype), x)
zeros = zeros_like(x)
ones = ones_like(x)
return [where(less(x, a_mins), zeros, where(less(a_maxs, x), zeros, ones * grad))]
Expand Down Expand Up @@ -591,7 +599,7 @@ def cross_entropy_grad(orig, grad):
x, y = orig.args
shape = shape_of(x)
batch_size = take(shape, const(0, dtype='int32'), axis=0)
grad = grad / batch_size.astype('float32')
grad = grad / batch_size.astype(x.checked_type.dtype)
return [-grad * y / x, -grad * log(x)]


Expand All @@ -600,5 +608,5 @@ def cross_entropy_with_logits_grad(orig, grad):
x, y = orig.args
shape = shape_of(x)
batch_size = take(shape, const(0, dtype='int32'), axis=0)
grad = grad / batch_size.astype('float32')
grad = grad / batch_size.astype(x.checked_type.dtype)
return [-grad * y, -grad * x]
1 change: 1 addition & 0 deletions python/tvm/relay/op/_transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,7 @@
_reg.register_injective_schedule("sequence_mask")
_reg.register_injective_schedule("one_hot")
_reg.register_reduce_schedule("collapse_sum_like")
_reg.register_reduce_schedule("collapse_sum_to")
_reg.register_injective_schedule("unravel_index")
_reg.register_injective_schedule("sparse_to_dense")

Expand Down
21 changes: 21 additions & 0 deletions python/tvm/relay/op/transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -660,6 +660,27 @@ def collapse_sum_like(data, collapse_type):
return _make.collapse_sum_like(data, collapse_type)


def collapse_sum_to(data, shape):
"""Return a summation of data to the specified shape.
Parameters
----------
data : relay.Expr
The input tensor.
shape : relay.Expr
Shape to collapse to.
Returns
-------
result : relay.Expr
The resulting tensor.
"""
if isinstance(shape, (list, tuple)):
shape = const(list(shape), "int32")
return _make.collapse_sum_to(data, shape)


def split(data, indices_or_sections, axis=0):
"""Split input tensor along axis by sections or indices.
Expand Down
48 changes: 48 additions & 0 deletions src/relay/op/tensor/transform.cc
Original file line number Diff line number Diff line change
Expand Up @@ -1713,6 +1713,54 @@ RELAY_REGISTER_OP("collapse_sum_like")
.set_attr<FTVMCompute>("FTVMCompute", CollapseSumLikeCompute)
.set_attr<TOpPattern>("TOpPattern", kCommReduce);

// CollapseSumTo: <A, B> -> B where Broadcast(A, B) = A
bool CollapseSumToRel(const Array<Type>& types, int num_inputs, const Attrs& attrs,
const TypeReporter& reporter) {
CHECK_EQ(types.size(), 3);
const InitOpAttrs* param = attrs.as<InitOpAttrs>();
const auto* target_shape = types[1].as<TensorTypeNode>();
DataType out_dtype = types[0].as<TensorTypeNode>()->dtype;

const IntImmNode* shape_shape = target_shape->shape[0].as<IntImmNode>();
CHECK(shape_shape) << "Parameter shape must have static shape";

std::vector<IndexExpr> oshape;
if (param->shape) {
const Array<Integer>& cshape_array = param->shape.value();
for (size_t i = 0; i < cshape_array.size(); ++i) {
oshape.push_back(cshape_array[i]);
}
} else {
for (int i = 0; i < shape_shape->value; ++i) {
oshape.push_back(Any());
}
}
reporter->Assign(types[2], TensorType(oshape, out_dtype));
return BroadcastRel({types[0], types[2], types[0]}, 2, Attrs(), reporter);
}

Expr MakeCollapseSumTo(Expr data, Expr shape) {
static const Op& op = Op::Get("collapse_sum_to");
auto attrs = make_object<InitOpAttrs>();
if (const auto* cshape = shape.as<ConstantNode>()) {
attrs->shape = ToVector(cshape->data);
}
return Call(op, {data, shape}, Attrs(attrs), {});
}

TVM_REGISTER_GLOBAL("relay.op._make.collapse_sum_to").set_body_typed(MakeCollapseSumTo);

RELAY_REGISTER_OP("collapse_sum_to")
.describe(R"code(Broadcast the first input to match the shape argument.
)code" TVM_ADD_FILELINE)
.set_num_inputs(2)
.add_argument("data", "Tensor", "The input tensor.")
.add_argument("shape", "Tensor", "Target shape.")
.set_support_level(4)
.add_type_rel("CollapseSumTo", CollapseSumToRel)
.set_attr<FTVMCompute>("FTVMCompute", CollapseSumLikeCompute)
.set_attr<TOpPattern>("TOpPattern", kCommReduce);

// BroadCastTo: <A, B> -> B where BroadCast(A, B) = B
bool BroadCastToRel(const Array<Type>& types, int num_inputs, const Attrs& attrs,
const TypeReporter& reporter) {
Expand Down
13 changes: 7 additions & 6 deletions tests/python/relay/test_op_grad_level1.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,9 +36,8 @@ def relu(x):


def test_unary_op():
def check_single_op(opfunc, ref):
def check_single_op(opfunc, ref, dtype):
shape = (10, 4)
dtype = 'float32'
tp = relay.TensorType(shape, dtype)
x = relay.var("x", tp)
y = opfunc(x)
Expand Down Expand Up @@ -76,16 +75,17 @@ def check_single_op(opfunc, ref):
(tvm.relay.acosh, lambda x: 1./ (x**2 - 1.)**(1./2.)),
(tvm.relay.asinh, lambda x: 1./ (x**2 + 1.)**(1./2.)),
(tvm.relay.atanh, lambda x: -1./ (x**2 - 1.))]:
check_single_op(opfunc, ref)
for dtype in ('float32', 'float64'):
check_single_op(opfunc, ref, dtype)


def test_binary_op():
def inst(vars, sh):
return [vars.get(s, s) for s in sh]

def check_binary_op(opfunc, ref):
def check_binary_op(opfunc, ref, dtype):
s = (5, 10, 5)
t = relay.TensorType((5, 10, 5))
t = relay.TensorType((5, 10, 5), dtype=dtype)
x = relay.var("x", t)
y = relay.var("y", t)
z = opfunc(x, y)
Expand All @@ -107,7 +107,8 @@ def check_binary_op(opfunc, ref):
(relay.subtract, lambda x, y: [np.ones_like(x), -np.ones_like(y)]),
(relay.multiply, lambda x, y: [y, x]),
(relay.divide, lambda x, y: [1 / y, - x / (y**2)])]:
check_binary_op(opfunc, ref)
for dtype in ('float32', 'float64'):
check_binary_op(opfunc, ref, dtype)


def test_softmax_grad():
Expand Down
14 changes: 8 additions & 6 deletions tests/python/relay/test_op_grad_level10.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,15 +21,17 @@


def test_cross_entropy_grad():
x = relay.var("x", shape=(2, 5))
y = relay.var("y", shape=(2, 5))
check_grad(relay.Function([x, y], relay.op.nn.cross_entropy(x, y)), eps=0.01, scale=0.1, mean=1)
for dtype in ('float32', 'float64'):
x = relay.var("x", shape=(2, 5), dtype=dtype)
y = relay.var("y", shape=(2, 5), dtype=dtype)
check_grad(relay.Function([x, y], relay.op.nn.cross_entropy(x, y)), eps=0.01, scale=0.1, mean=1)


def test_cross_entropy_with_logits_grad():
x = relay.var("x", shape=(2, 5))
y = relay.var("y", shape=(2, 5))
check_grad(relay.Function([x, y], relay.op.nn.cross_entropy_with_logits(x, y)), eps=0.01, scale=0.1, mean=1)
for dtype in ('float32', 'float64'):
x = relay.var("x", shape=(2, 5), dtype=dtype)
y = relay.var("y", shape=(2, 5), dtype=dtype)
check_grad(relay.Function([x, y], relay.op.nn.cross_entropy_with_logits(x, y)), eps=0.01, scale=0.1, mean=1)

def test_checkpoint():
inputs = [relay.var("x{}".format(i), shape=(1,)) for i in range(4)]
Expand Down
31 changes: 16 additions & 15 deletions tests/python/relay/test_op_grad_level3.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,21 +25,22 @@


def test_clip():
ref = (lambda x: np.where(x > 10.0, np.zeros_like(x),
np.where(x < 1.0, np.zeros_like(x), np.ones_like(x))))
x = relay.var("x", relay.TensorType((10, 4), "float32"))
y = tvm.relay.clip(x, 1.0, 10.0)

data = np.random.rand(10, 4).astype("float32") * 11.0
ref_grad = ref(data)
fwd_func = relay.Function([x], y)
fwd_func = run_infer_type(fwd_func)
bwd_func = run_infer_type(gradient(fwd_func))

for target, ctx in ctx_list():
intrp = relay.create_executor(ctx=ctx, target=target)
op_res, (op_grad, ) = intrp.evaluate(bwd_func)(data)
np.testing.assert_allclose(op_grad.asnumpy(), ref_grad, rtol=0.01)
for dtype in ('float32', 'float64'):
ref = (lambda x: np.where(x > 10.0, np.zeros_like(x),
np.where(x < 1.0, np.zeros_like(x), np.ones_like(x))))
x = relay.var("x", relay.TensorType((10, 4), dtype))
y = tvm.relay.clip(x, 1.0, 10.0)

data = np.random.rand(10, 4).astype(dtype) * 11.0
ref_grad = ref(data)
fwd_func = relay.Function([x], y)
fwd_func = run_infer_type(fwd_func)
bwd_func = run_infer_type(gradient(fwd_func))

for target, ctx in ctx_list():
intrp = relay.create_executor(ctx=ctx, target=target)
op_res, (op_grad, ) = intrp.evaluate(bwd_func)(data)
np.testing.assert_allclose(op_grad.asnumpy(), ref_grad, rtol=0.01)


def verify_transpose_grad(d_shape, axes=None):
Expand Down
20 changes: 20 additions & 0 deletions tests/python/relay/test_op_level10.py
Original file line number Diff line number Diff line change
Expand Up @@ -168,6 +168,26 @@ def test_collapse_sum_like():
op_res = intrp.evaluate(func)(x, y)
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res, rtol=1e-5)


def test_collapse_sum_to():
shape = (3, 4, 5, 6)
shape_to = (4, 5, 6)
dtype = "float32"
x = relay.Var("x", relay.ty.TensorType(shape , dtype))
z = relay.collapse_sum_to(x, shape_to)
zz = run_infer_type(z)
assert zz.checked_type == relay.ty.TensorType(shape_to, dtype)

func = relay.Function([x], z)
x = np.random.uniform(size=shape).astype(dtype)
ref_res = np.sum(x, 0)
for target, ctx in ctx_list():
for kind in ["graph", "debug"]:
intrp = relay.create_executor(kind, ctx=ctx, target=target)
op_res = intrp.evaluate(func)(x)
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res, rtol=1e-5)


def test_broadcast_to():
shape = (4, 1, 6)
shape_like = (3, 4, 5, 6)
Expand Down