Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Quantize/Dequantize Partitioning #5940

Merged
merged 11 commits into from
Aug 15, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 16 additions & 0 deletions python/tvm/relay/analysis/analysis.py
Original file line number Diff line number Diff line change
Expand Up @@ -236,6 +236,22 @@ def all_type_vars(expr, mod=None):
return _ffi_api.all_type_vars(expr, use_mod)


def all_dtypes(expr):
"""Collect set of all data types used in `expr`.

Parameters
----------
expr : tvm.relay.Expr
The input expression

Returns
-------
ret : Set[String]
Set of data types used in the expression (e.g., `{'int8', 'int32'}`)
"""
return set(_ffi_api.all_dtypes(expr))


def collect_device_info(expr):
"""Collect the device allocation map for the given expression. The device
ids are propagated from the `device_copy` operators.
Expand Down
340 changes: 340 additions & 0 deletions python/tvm/relay/quantize/_partition_conversions.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,340 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#pylint: disable=unused-argument, not-context-manager
"""Utilities for partitioning input quantization and output dequantization expressions."""
import tvm
from tvm import relay
from tvm.relay.expr_functor import ExprMutator, ExprVisitor

# operators that are allowed in prefix/suffix partitions, because they are used
# to quantize/dequantize
ALLOWED_CONVERSION_OPS = ['add', 'multiply', 'right_shift', 'clip', 'round', 'cast']

def partition_conversions(mod, quantized_dtypes, ensure_fully_integral):
"""Partition mod into input quantization, core quantized inference, and output dequantization.
The resulting module includes an additional `main` that fuses all three
partitions together.
Parameters
----------
mod : tvm.IRModule
Quantized module to partition
quantized_dtypes : Set[str]
Set of data types allowed in quantized operators
ensure_fully_integral : bool
Whether to raise an exception if there are unquantized operators in the result
Returns
-------
fused_mod : tvm.IRModule
Module containing the input quantization (`quantize_inputs`), core
quantized inference (`quantized_main`), output dequantization
(`dequantize_outputs`), and full quantized inference functions
"""
# Partitioning is implemented as in the diagram below:
#
# +----------------------------+
# |Quantized Inference Function|
# +--------------+-------------+
# |
# partition_prefix
# |
# +-----+-------------------------+
# | |
# +--------v---------+ +-----------------v------------------+
# |Input Quantization| |Rest of Quantized Inference Function|
# +------------------+ +-----------------+------------------+
# |
# partition_suffix
# |
# +------+---------------------+
# | |
# +------------------+ +----------v------------+ +-----------v---------+
# |Input Quantization| |Core Quantized Function| |Output Dequantization|
# +------------------+ +-----------------------+ +---------------------+
#
# The final module contains all three partitions, as well as a
# `main` function that composes these three functions (depicted below).
#
# +--------------------+-------------------------+-----------------------+
# | Input Quantization | Core Quantized Function | Output Dequantization |
# +--------------------+-------------------------+-----------------------+
assert len(mod.functions) == 1
pre_mod, mid_mod = partition_prefix(mod, quantized_dtypes)
mid_mod, post_mod = partition_suffix(mid_mod, quantized_dtypes)
if ensure_fully_integral:
assert has_only_conversion_ops(pre_mod['main'])
assert relay.analysis.all_dtypes(mid_mod['main']).issubset(quantized_dtypes)
assert has_only_conversion_ops(post_mod['main'])
return fuse_partitions(pre_mod, mid_mod, post_mod)


def fuse_partitions(pre_mod, mid_mod, post_mod):
"""Combine prefix, middle, and suffix modules into a single module.
The combined module includes an additional `main` that fuses all three
partitions together.
Parameters
----------
pre_mod : tvm.IRModule
Module containing an input quantization function
mid_mod : tvm.IRModule
Module containing core of a quantized inference function
post_mod : tvm.IRModule
Module containing an output dequantization function
Returns
-------
fused_mod : tvm.IRModule
Module containing the input quantization, core quantized inference,
output dequantization, and full quantized inference functions
"""
pre_func = pre_mod['main']
mid_func = mid_mod['main']
post_func = post_mod['main']
# create a module containing the prefix, middle, and suffix partitions
fused_mod = tvm.IRModule(functions={
relay.GlobalVar('quantize_inputs'): pre_func,
relay.GlobalVar('quantized_main'): mid_func,
relay.GlobalVar('dequantize_outputs'): post_func,
})
# construct a `main` that strings together the partitions, such that its
# behaviour is equivalent to `main` in an *unpartitioned* module
scope_builder = relay.ScopeBuilder()
fused_mod_main_params = [relay.Var(param.name_hint) for param in pre_func.params]
quantized_inputs = scope_builder.let('quantized_inputs', relay.Call(
fused_mod.get_global_var('quantize_inputs'),
fused_mod_main_params
))
quantized_outputs = scope_builder.let('quantized_outputs', relay.Call(
fused_mod.get_global_var('quantized_main'),
[relay.TupleGetItem(quantized_inputs, i) for i in range(len(pre_func.ret_type.fields))]
))
dequantized_outputs = scope_builder.let('dequantized_outputs', relay.Call(
fused_mod.get_global_var('dequantize_outputs'),
[quantized_outputs]
))
scope_builder.ret(dequantized_outputs)
fused_mod['main'] = relay.Function(fused_mod_main_params, scope_builder.get())
return fused_mod


class PrefixCutter(ExprMutator):
"""A mutator for extracting input quantization expressions from a function
The result of `visit` is the core function, and the input quantization
expressions are stored in the `prefix_sb` scope builder.
"""

def __init__(self, params, quantized_dtypes):
ExprMutator.__init__(self)
self.params = set(params)
self.quantized_dtypes = quantized_dtypes
self.subtree_params = set()
self.new_func_params = []
self.prefix_sb = relay.ScopeBuilder()
self.prefix_binding_map = {}

def visit_var(self, var):
if var in self.params:
self.subtree_params.add(var)
return var

def visit_call(self, call):
# TODO(weberlo) use graph pattern matching?
if not hasattr(call.op, 'name') or call.op.name not in ALLOWED_CONVERSION_OPS:
new_args = []
for arg in call.args:
new_arg = self.visit(arg)
if len(self.subtree_params) == 0:
new_args.append(new_arg)
else:
assert len(self.subtree_params) == 1
param = next(iter(self.subtree_params))
pre_param = self.prefix_sb.let(param.name_hint, new_arg)
self.subtree_params.clear()
mid_param = relay.Var(
param.name_hint,
arg.checked_type)
self.prefix_binding_map[mid_param] = pre_param
# return new parameter, then we can use
# relay.analysis.free_vars at the end of the pass to generate
# new `mid_func` type signature
new_args.append(mid_param)
return relay.Call(call.op, new_args, call.attrs)

return super().visit_call(call)


def partition_prefix(mod, quantized_dtypes):
"""Extract input quantization expressions from `mod['main']`.
Parameters
----------
mod : tvm.IRModule
Module containing a quantized inference function
quantized_dtypes : Set[str]
Set of data types allowed in quantized operators
Returns
-------
pre_mod : tvm.IRModule
Module containing the input quantization function
mid_mod : tvm.IRModule
Module containing a function with everything except for input quantization
"""
assert len(mod.functions) == 1
func = mod['main']
prefix_cutter = PrefixCutter(func.params, quantized_dtypes)
mid_body = prefix_cutter.visit(func.body)
assert not func.type_params, 'unimplemented'
assert func.attrs is None, 'unimplemented'
mid_func = relay.Function(
relay.analysis.free_vars(mid_body),
mid_body)
mid_mod = tvm.IRModule.from_expr(mid_func)

scope_builder = prefix_cutter.prefix_sb
# make sure we pass through all inputs in the prefix function's return expr
# (even those that don't require quantization)
ret_expr = []
for param in mid_func.params:
if param in prefix_cutter.prefix_binding_map:
# this param required a conversion, so we collected it in the
# prefix cutter pass, and we can use the pass's mapping from mid
# func params to pre func params
ret_expr.append(prefix_cutter.prefix_binding_map[param])
else:
# there was no detected conversion for this argument, so we thread
# it through the prefix function untouched
ret_expr.append(relay.Var(param.name_hint, param.checked_type))
ret_expr = relay.Tuple(ret_expr)
scope_builder.ret(ret_expr)
pre_func_body = scope_builder.get()
pre_func = relay.Function(relay.analysis.free_vars(pre_func_body), pre_func_body)
pre_mod = tvm.IRModule.from_expr(pre_func)

return pre_mod, mid_mod


class SuffixCutter(ExprMutator):
"""A mutator for extracting output dequantization expressions from a function
The result of `visit` is a function containing the output dequantization
expressions, and the middle of the function is stored in `mid_body`.
"""

def __init__(self, quantized_dtypes):
ExprMutator.__init__(self)
self.mid_body = None
self.quantized_dtypes = quantized_dtypes

def visit(self, expr):
if hasattr(expr, 'checked_type') and expr.checked_type.dtype in self.quantized_dtypes:
self.mid_body = expr
return relay.Var('input', expr.checked_type)

return super().visit(expr)


def partition_suffix(mod, quantized_dtypes):
"""Extract output dequantization expressions from `mod['main']`.
Parameters
----------
mod : tvm.IRModule
Module containing a quantized inference function
quantized_dtypes : Set[str]
Set of data types allowed in quantized operators
Returns
-------
pre_mod : tvm.IRModule
Module containing the input quantization function
mid_mod : tvm.IRModule
Module containing a function with everything except for input quantization
"""
assert len(mod.functions) == 1
func = mod['main']
suffix_cutter = SuffixCutter(quantized_dtypes)
post_body = suffix_cutter.visit(func.body)
assert not func.type_params, 'unimplemented'
assert func.attrs is None, 'unimplemented'
post_func = relay.Function(
relay.analysis.free_vars(post_body),
post_body,
func.ret_type)
post_mod = tvm.IRModule.from_expr(post_func)

mid_body = suffix_cutter.mid_body
if mid_body is None:
# The suffix contains the entire function, meaning there was no
# quantization boundary in the given mod. In this case, we use the
# suffix mod as the middle mod and make the suffix an identity function.
mid_mod = post_mod
post_body = relay.Var('input', mid_mod['main'].ret_type)
post_func = relay.Function(
[post_body],
post_body)
post_mod = tvm.IRModule.from_expr(post_func)
else:
mid_func = relay.Function(
func.params,
mid_body)
mid_mod = tvm.IRModule.from_expr(mid_func)

return mid_mod, post_mod


class ConversionOpChecker(ExprVisitor):
"""A pass for checking that the visited function contains only conversion ops"""
def __init__(self):
ExprVisitor.__init__(self)
self.valid = True

def visit_call(self, call):
if not hasattr(call.op, 'name') or call.op.name not in ALLOWED_CONVERSION_OPS:
self.valid = False
super().visit_call(call)


def has_only_conversion_ops(func):
"""Return true iff the given function contains only quantization/dequantization ops.
Parameters
----------
func : relay.Function
Function being checked
Returns
-------
valid : bool
Whether the function contains only conversion ops
"""
checker = ConversionOpChecker()
checker.visit(func)
return checker.valid
Loading