Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[topi] block sparse dense on cuda #5746

Merged
merged 1 commit into from
Jun 10, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions topi/python/topi/cuda/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,3 +50,4 @@
from .conv3d_ndhwc_tensorcore import *
from .dense_tensorcore import *
from .correlation import *
from .sparse import *
94 changes: 94 additions & 0 deletions topi/python/topi/cuda/sparse.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

"""Sparse operators"""
from tvm import te
from tvm import autotvm
from tvm.autotvm.task.space import SplitEntity
from ..util import traverse_inline
from .. import nn


@autotvm.register_topi_compute("sparse_dense.cuda")
def sparse_dense(cfg, data, weight_data, weight_indices, weight_indptr):
"""
Computes sparse-dense matrix multiplication of `data` and
`(weight_data, weight_indices, weight_indptr).T`

Parameters
----------
cfg: ConfigEntity
The config for this template

data : tvm.te.Tensor
2-D with shape [M, K], float32

weight_data : tvm.te.Tensor
1-D with shape [nnz] (CSR) or
3-D with shape [num_blocks, bs_r, bs_c] (BSR)

weight_indices : tvm.te.Tensor
1-D with shape [nnz] (CSR) or
1-D with shape [num_blocks] (BSR)

weight_indptr : tvm.te.Tensor
1-D with shape [N + 1] (CSR) or
1-D with shape [(N + 1) // bs_r] (BSR)

Returns
-------
output : tvm.te.Tensor
2-D with shape [M, N]
"""
# pylint:disable=unused-argument
return nn.sparse_dense(data, weight_data, weight_indices, weight_indptr)


@autotvm.register_topi_schedule("sparse_dense.cuda")
def schedule_sparse_dense(cfg, outs):
"""Create schedule for sparse dense"""
# pylint:disable=invalid-name
s = te.create_schedule([x.op for x in outs])

def _callback(op):
if op.tag == "sparse_dense_bsrmm":
y_bsrmm = op.input_tensors[0]
assert y_bsrmm.op.tag == "sparse_dense_bsrmm_block"
out = s.outputs[0].output(0)
(_, c) = s[y_bsrmm].op.reduce_axis

(m_o, n_o) = s[out].op.axis
s[out].bind(m_o, te.thread_axis("blockIdx.x"))
s[out].bind(n_o, te.thread_axis("blockIdx.y"))
s[y_bsrmm].compute_at(s[out], n_o)

thread_x = te.thread_axis("threadIdx.x")

cfg.define_split("tile_c", c, num_outputs=2)
if cfg.is_fallback:
cfg["tile_c"] = SplitEntity([-1, 8])
_, ci = cfg['tile_c'].apply(s, y_bsrmm, c)

y_bsrmm_factored = s.rfactor(y_bsrmm, ci)
tx = s[y_bsrmm].op.reduce_axis[0]
s[y_bsrmm].bind(tx, thread_x)
s[y_bsrmm_factored].compute_at(s[y_bsrmm], tx)
s[y_bsrmm].set_store_predicate(thread_x.var.equal(0))
s[out].set_store_predicate(thread_x.var.equal(0))

traverse_inline(s, outs[0].op, _callback)
return s
2 changes: 1 addition & 1 deletion topi/python/topi/nn/sparse.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ def sparse_dense(data, weight_data, weight_indices, weight_indptr):

Parameters
----------
x : tvm.te.Tensor
data : tvm.te.Tensor
2-D with shape [M, K], float32

weight_data : tvm.te.Tensor
Expand Down
70 changes: 50 additions & 20 deletions topi/tests/python/test_topi_sparse.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,12 @@
import time
import scipy.sparse as sp

_sparse_dense_implement = {
"generic": (topi.nn.sparse_dense, topi.generic.schedule_sparse_dense),
"cuda": (topi.cuda.sparse_dense, topi.cuda.schedule_sparse_dense),
"x86": (topi.nn.sparse_dense, topi.x86.schedule_sparse_dense)
}

def verify_dynamic_csrmv(batch, in_dim, out_dim, use_bias=True):
nr, nc, n = te.var("nr"), te.var("nc"), te.var("n")
dtype = 'float32'
Expand Down Expand Up @@ -293,16 +299,28 @@ def test_sparse_dense_bsr():
W_indices = te.placeholder(shape=W_sp_np.indices.shape, dtype=str(W_sp_np.indices.dtype))
W_indptr = te.placeholder(shape=W_sp_np.indptr.shape, dtype=str(W_sp_np.indptr.dtype))
X = te.placeholder(shape=X_np.shape, dtype=str(X_np.dtype))
Y = topi.nn.sparse_dense(X, W_data, W_indices, W_indptr)
s = te.create_schedule(Y.op)
func = tvm.build(s, [X, W_data, W_indices, W_indptr, Y])
Y_tvm = tvm.nd.array(np.zeros(Y_np.shape, dtype=Y_np.dtype))
func(tvm.nd.array(X_np),
tvm.nd.array(W_sp_np.data),
tvm.nd.array(W_sp_np.indices),
tvm.nd.array(W_sp_np.indptr),
Y_tvm)
tvm.testing.assert_allclose(Y_tvm.asnumpy(), Y_np, atol=1e-4, rtol=1e-4)

def check_device(device):
ctx = tvm.context(device, 0)
if not ctx.exist:
print("Skip because %s is not enabled" % device)
return
print("Running on target: %s" % device)
fcompute, fschedule = topi.testing.dispatch(device, _sparse_dense_implement)
with tvm.target.create(device):
Y = fcompute(X, W_data, W_indices, W_indptr)
s = fschedule([Y])
func = tvm.build(s, [X, W_data, W_indices, W_indptr, Y])
Y_tvm = tvm.nd.array(np.zeros(Y_np.shape, dtype=Y_np.dtype), ctx=ctx)
func(tvm.nd.array(X_np, ctx=ctx),
tvm.nd.array(W_sp_np.data, ctx=ctx),
tvm.nd.array(W_sp_np.indices, ctx=ctx),
tvm.nd.array(W_sp_np.indptr, ctx=ctx),
Y_tvm)
tvm.testing.assert_allclose(Y_tvm.asnumpy(), Y_np, atol=1e-4, rtol=1e-4)

for device in ['llvm', 'cuda']:
check_device(device)

def test_sparse_dense_bsr_randomized():
for _ in range(20):
Expand All @@ -322,16 +340,28 @@ def test_sparse_dense_bsr_randomized():
W_indices = te.placeholder(shape=W_sp_np.indices.shape, dtype=str(W_sp_np.indices.dtype))
W_indptr = te.placeholder(shape=W_sp_np.indptr.shape, dtype=str(W_sp_np.indptr.dtype))
X = te.placeholder(shape=X_np.shape, dtype=str(X_np.dtype))
Y = topi.nn.sparse_dense(X, W_data, W_indices, W_indptr)
s = te.create_schedule(Y.op)
func = tvm.build(s, [X, W_data, W_indices, W_indptr, Y])
Y_tvm = tvm.nd.array(np.zeros(Y_np.shape, dtype=Y_np.dtype))
func(tvm.nd.array(X_np),
tvm.nd.array(W_sp_np.data),
tvm.nd.array(W_sp_np.indices),
tvm.nd.array(W_sp_np.indptr),
Y_tvm)
tvm.testing.assert_allclose(Y_tvm.asnumpy(), Y_np, atol=1e-5, rtol=1e-5)

def check_device(device):
ctx = tvm.context(device, 0)
if not ctx.exist:
print("Skip because %s is not enabled" % device)
return
print("Running on target: %s" % device)
fcompute, fschedule = topi.testing.dispatch(device, _sparse_dense_implement)
with tvm.target.create(device):
Y = fcompute(X, W_data, W_indices, W_indptr)
s = fschedule([Y])
func = tvm.build(s, [X, W_data, W_indices, W_indptr, Y])
Y_tvm = tvm.nd.array(np.zeros(Y_np.shape, dtype=Y_np.dtype), ctx=ctx)
func(tvm.nd.array(X_np, ctx=ctx),
tvm.nd.array(W_sp_np.data, ctx=ctx),
tvm.nd.array(W_sp_np.indices, ctx=ctx),
tvm.nd.array(W_sp_np.indptr, ctx=ctx),
Y_tvm)
tvm.testing.assert_allclose(Y_tvm.asnumpy(), Y_np, atol=1e-5, rtol=1e-5)

for device in ['llvm', 'cuda']:
check_device(device)


def test_sparse_dense():
Expand Down