Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CODEGEN][CONTRIB] CoreML codegen #5634

Merged
merged 15 commits into from
Jun 12, 2020
Merged
171 changes: 171 additions & 0 deletions apps/ios_rpc/tests/ios_rpc_mobilenet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,171 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

import tvm
from tvm import rpc, relay
from tvm.contrib.download import download_testdata
from tvm.relay.expr_functor import ExprMutator
from tvm.relay import transform
from tvm.relay.op.annotation import compiler_begin, compiler_end
from tvm.relay.quantize.quantize import prerequisite_optimize
from tvm.contrib import util, xcode, graph_runtime, coreml_runtime
from tvm.contrib.target import coreml as _coreml

import os
import re
import sys
import numpy as np
from mxnet import gluon
from PIL import Image
import coremltools

# Set to be address of tvm proxy.
proxy_host = os.environ["TVM_IOS_RPC_PROXY_HOST"]
# Set your desination via env variable.
# Should in format "platform=iOS,id=<the test device uuid>"
destination = os.environ["TVM_IOS_RPC_DESTINATION"]

if not re.match(r"^platform=.*,id=.*$", destination):
print("Bad format: {}".format(destination))
print("Example of expected string: platform=iOS,id=1234567890abcabcabcabc1234567890abcabcab")
sys.exit(1)

proxy_port = 9090
key = "iphone"

# Change target configuration, this is setting for iphone6s
#arch = "x86_64"
#sdk = "iphonesimulator"
arch = "arm64"
sdk = "iphoneos"
target_host = "llvm -target=%s-apple-darwin" % arch

# override metal compiler to compile to iphone
@tvm.register_func("tvm_callback_metal_compile")
def compile_metal(src):
return xcode.compile_metal(src, sdk=sdk)

def prepare_input():
img_url = 'https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true'
img_name = 'cat.png'
synset_url = ''.join(['https://gist.githubusercontent.com/zhreshold/',
'4d0b62f3d01426887599d4f7ede23ee5/raw/',
'596b27d23537e5a1b5751d2b0481ef172f58b539/',
'imagenet1000_clsid_to_human.txt'])
synset_name = 'imagenet1000_clsid_to_human.txt'
img_path = download_testdata(img_url, 'cat.png', module='data')
synset_path = download_testdata(synset_url, synset_name, module='data')
with open(synset_path) as f:
synset = eval(f.read())
image = Image.open(img_path).resize((224, 224))

image = np.array(image) - np.array([123., 117., 104.])
image /= np.array([58.395, 57.12, 57.375])
image = image.transpose((2, 0, 1))
image = image[np.newaxis, :]
return image.astype('float32'), synset


def get_model(model_name, data_shape):
gluon_model = gluon.model_zoo.vision.get_model(model_name, pretrained=True)
mod, params = relay.frontend.from_mxnet(gluon_model, {"data": data_shape})
# we want a probability so add a softmax operator
func = mod["main"]
func = relay.Function(func.params, relay.nn.softmax(func.body), None, func.type_params, func.attrs)

return func, params


def test_mobilenet():
temp = util.tempdir()
image, synset = prepare_input()
model, params = get_model('mobilenetv2_1.0', image.shape)

def run(mod, target):
with relay.build_config(opt_level=3):
graph, lib, _params = relay.build(mod, target=target,
target_host=target_host, params=params)
path_dso = temp.relpath("deploy.dylib")
lib.export_library(path_dso, xcode.create_dylib, arch=arch, sdk=sdk)
xcode.codesign(path_dso)

# Start RPC test server that contains the compiled library.
xcode.popen_test_rpc(proxy_host, proxy_port, key,
destination=destination, libs=[path_dso])

# connect to the proxy
remote = rpc.connect(proxy_host, proxy_port, key=key)

if target == "metal":
ctx = remote.metal(0)
else:
ctx = remote.cpu(0)
lib = remote.load_module("deploy.dylib")
m = graph_runtime.create(graph, lib, ctx)

m.set_input('data', tvm.nd.array(image, ctx))
m.set_input(**_params)
m.run()
tvm_output = m.get_output(0)
top1 = np.argmax(tvm_output.asnumpy()[0])
print('TVM prediction top-1:', top1, synset[top1])

# evaluate
ftimer = m.module.time_evaluator("run", ctx, number=3, repeat=10)
prof_res = np.array(ftimer().results) * 1000
print("%-19s (%s)" % ("%.2f ms" % np.mean(prof_res), "%.2f ms" % np.std(prof_res)))

def annotate(func, compiler):
"""
An annotator for Core ML.
"""
# Bind free variables to the constant values.
bind_dict = {}
for arg in func.params:
name = arg.name_hint
if name in params:
bind_dict[arg] = relay.const(params[name])

func = relay.bind(func, bind_dict)

# Annotate the entire graph for Core ML
mod = tvm.IRModule()
mod["main"] = func

seq = tvm.transform.Sequential([
transform.SimplifyInference(),
transform.FoldConstant(),
transform.FoldScaleAxis(),
transform.AnnotateTarget(compiler),
transform.MergeCompilerRegions(),
transform.PartitionGraph()
])

with relay.build_config(opt_level=3):
mod = seq(mod)

return mod

# CPU
run(model, target_host)
# Metal
run(model, "metal")
# CoreML
run(annotate(model, "coremlcompiler"), target_host)

if __name__ == "__main__":
test_mobilenet()
10 changes: 4 additions & 6 deletions python/tvm/contrib/coreml_runtime.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,14 +18,12 @@
import tvm._ffi
from ..rpc import base as rpc_base

def create(compiled_model_path, output_names, ctx):
def create(model_dir, ctx):
"""Create a runtime executor module given a coreml model and context.
Parameters
----------
compiled_model_path : str
The path of the compiled model to be deployed.
output_names : list of str
The output names of the model.
model_dir : str
The directory where the compiled models are located.
ctx : TVMContext
The context to deploy the module. It can be local or remote when there
is only one TVMContext.
Expand All @@ -42,7 +40,7 @@ def create(compiled_model_path, output_names, ctx):
else:
fcreate = tvm._ffi.get_global_func(runtime_func)

return CoreMLModule(fcreate(compiled_model_path, ctx, *output_names))
return CoreMLModule(fcreate(model_dir))


class CoreMLModule(object):
Expand Down
18 changes: 18 additions & 0 deletions python/tvm/contrib/target/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Codegen and runtime APIs for targets.
"""
Loading