Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FRONTEND]onnx, mxnet, pytorch mathops added #5561

Merged
merged 1 commit into from
May 11, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 10 additions & 3 deletions python/tvm/relay/frontend/mxnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -1749,16 +1749,18 @@ def impl(inputs, input_types):
"floor",
"ceil",
"sigmoid",
"tanh",
"negative",
"reshape_like",
"zeros_like",
"ones_like",
"where",
"gather_nd",
"tan",
"cos",
"sin"
"cosh",
"sin",
"sinh",
"tan",
"tanh",
]

_convert_map = {
Expand All @@ -1774,7 +1776,12 @@ def impl(inputs, input_types):
"broadcast_maximum" : _rename(_op.maximum),
"broadcast_minimum" : _rename(_op.minimum),
"broadcast_power" : _rename(_op.power),
"arccos" : _rename(_op.acos),
"arcsin" : _rename(_op.asin),
"arctan" : _rename(_op.atan),
"arccosh" : _rename(_op.acosh),
"arcsinh" : _rename(_op.asinh),
"arctanh" : _rename(_op.atanh),
"broadcast_equal" : _mx_compare(_op.equal, _rename),
"broadcast_not_equal" : _mx_compare(_op.not_equal, _rename),
"broadcast_greater" : _mx_compare(_op.greater, _rename),
Expand Down
11 changes: 11 additions & 0 deletions python/tvm/relay/frontend/onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -1627,6 +1627,17 @@ def _get_convert_map(opset):
'Greater': Greater.get_converter(opset),
'Less': Less.get_converter(opset),
'Log': Renamer('log'),
'ACos': Renamer('acos'),
'ACosh': Renamer('acosh'),
'ASin': Renamer('asin'),
'ASinh': Renamer('asinh'),
'ATan': Renamer('atan'),
'ATanh': Renamer('atanh'),
'Cos': Renamer('cos'),
'Cosh': Renamer('cosh'),
'Sin': Renamer('sin'),
'Sinh': Renamer('sinh'),
'Tan': Renamer('tan'),
'Tanh': Renamer('tanh'),
'Pow': Renamer('power'),
'PRelu': Prelu.get_converter(opset),
Expand Down
2 changes: 2 additions & 0 deletions python/tvm/relay/frontend/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -1699,6 +1699,8 @@ def _get_convert_map(prelude):
"aten::sinh" : _unary("sinh"),
"aten::tan" : _unary("tan"),
"aten::tanh" : _unary("tanh"),
"aten::acos" : _unary("acos"),
"aten::asin" : _unary("asin"),
"aten::atan" : _unary("atan"),
"aten::log" : _unary("log"),
"aten::log2" : _unary("log2"),
Expand Down
21 changes: 21 additions & 0 deletions tests/python/frontend/mxnet/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -363,6 +363,26 @@ def test_forward_elemwise_ops():
op_res = intrp.evaluate()(a_np, b_np)
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy())


def test_forward_unary_ops():
for op in ["cos", "sin", "tan",
"cosh", "sinh", "tanh",
"arccos", "arcsin", "arctan",
"arccosh", "arcsinh", "arctanh"]:
shape = (1, 3, 4, 5)
dtype = 'float32'
a_np = np.random.uniform(size=shape).astype(dtype)
mx_sym = _mx_symbol(mx.sym, op, [mx.sym.var('a')])
ref_res = _mx_symbol(mx.nd, op, [mx.nd.array(a_np)])
shapes = {'a': shape}
mod, _ = relay.frontend.from_mxnet(mx_sym, shapes, dtype)
for target, ctx in ctx_list():
for kind in ["graph", "debug"]:
intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target)
op_res = intrp.evaluate()(a_np)
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy(), rtol=1e-5, atol=1e-5)


def test_forward_scalar_ops():
for op in [operator.add, operator.sub, operator.mul, operator.truediv,
operator.pow, operator.lt, operator.le, operator.eq,
Expand Down Expand Up @@ -1113,6 +1133,7 @@ def verify(shape, blocksize=2):
test_forward_broadcast_to()
test_forward_logical_not()
test_forward_elemwise_ops()
test_forward_unary_ops()
test_forward_scalar_ops()
test_forward_slice_like()
test_forward_slice_axis()
Expand Down
11 changes: 11 additions & 0 deletions tests/python/frontend/onnx/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -1598,6 +1598,17 @@ def verify_single_ops(op, x, out_np, rtol=1e-5, atol=1e-5):
verify_single_ops("Exp", x, np.exp(x))
verify_single_ops("Log", x, np.log(x))
verify_single_ops("Log", x, np.log(x))
verify_single_ops("ACos", x, np.arccos(x))
verify_single_ops("ACosh", x, np.arccosh(x))
verify_single_ops("ASin", x, np.arcsin(x))
verify_single_ops("ASinh", x, np.arcsinh(x))
verify_single_ops("ATan", x, np.arctan(x))
verify_single_ops("ATanh", x, np.arctanh(x))
verify_single_ops("Cos", x, np.cos(x))
verify_single_ops("Cosh", x, np.cosh(x))
verify_single_ops("Sin", x, np.sin(x))
verify_single_ops("Sinh", x, np.sinh(x))
verify_single_ops("Tan", x, np.tan(x))
verify_single_ops("Tanh", x, np.tanh(x))
verify_single_ops("Sigmoid", x, 1 / (1 + np.exp(-x)))
verify_single_ops("Softsign", x, x / (1 + np.abs(x)))
Expand Down
14 changes: 12 additions & 2 deletions tests/python/frontend/pytorch/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -1895,7 +1895,15 @@ class Tanh1(Module):
def forward(self, *args):
return torch.tanh(args[0])

class ATanh1(Module):
class Acos1(Module):
def forward(self, *args):
return torch.acos(args[0])

class Asin1(Module):
def forward(self, *args):
return torch.asin(args[0])

class Atan1(Module):
def forward(self, *args):
return torch.atan(args[0])

Expand Down Expand Up @@ -1956,7 +1964,9 @@ def forward(self, *args):
verify_model(Sinh1().float().eval(), input_data=input_data)
verify_model(Tan1().float().eval(), input_data=input_data)
verify_model(Tanh1().float().eval(), input_data=input_data)
verify_model(ATanh1().float().eval(), input_data=input_data)
verify_model(Acos1().float().eval(), input_data=input_data)
verify_model(Asin1().float().eval(), input_data=input_data)
verify_model(Atan1().float().eval(), input_data=input_data)
verify_model(Log1().float().eval(), input_data=input_data)
verify_model(Log2_1().float().eval(), input_data=input_data)
verify_model(Log10_1().float().eval(), input_data=input_data)
Expand Down