Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add tests for running micro on native arm hardware #5546

Merged
merged 1 commit into from
May 9, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
385 changes: 385 additions & 0 deletions tests/micro/test_runtime_micro_on_arm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,385 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import os

import numpy as np
import tvm
from tvm import te
from tvm.contrib import graph_runtime, util
from tvm import relay
import tvm.micro as micro
from tvm.micro import create_micro_mod
from tvm.relay.testing import resnet

# Use real micro device - an STM32F746 discovery board
# SETUP:
# Be sure to have openocd installed and running
# Ex : openocd -f board/stm32f7discovery.cfg
# Be sure to have the ST CMSIS library downloaded, installed and
# Ex : export CMSIS_ST_PATH="/home/yourid/st/STM32Cube_FW_F7_V1.16.0/Drivers/CMSIS"
DEV_CONFIG_A = micro.device.arm.stm32f746xx.generate_config("127.0.0.1", 6666)
DEV_CONFIG_B = micro.device.arm.stm32f746xx.generate_config("127.0.0.1", 6666)
TARGET = 'c -device=micro_dev'

def relay_micro_build(func, dev_config, params=None):
"""Create a graph runtime module with a micro device context from a Relay function.

Parameters
----------
func : relay.Function
function to compile

dev_config : Dict[str, Any]
MicroTVM config dict for the target device

params : dict
input parameters that do not change during inference

Return
------
mod : tvm.runtime.Module
graph runtime module for the target device
"""
disable_vectorize = tvm.target.build_config(disable_vectorize=True)
disable_fusion = relay.build_config(disabled_pass={'FuseOps'})
with disable_vectorize, disable_fusion:
graph, c_mod, params = relay.build(func, target=TARGET, params=params)
micro_mod = micro.create_micro_mod(c_mod, dev_config)
ctx = tvm.micro_dev(0)
mod = graph_runtime.create(graph, micro_mod, ctx)
mod.set_input(**params)
return mod


GDB_INIT_TEMPLATE = """
layout asm
target remote localhost:{gdb_port}
set $pc = UTVMInit
break UTVMDone
"""


def reset_gdbinit():
if 'server_port' not in DEV_CONFIG_A:
return
try:
gdb_init_dir = os.environ['MICRO_GDB_INIT_DIR']
except KeyError:
return
with open(f'{gdb_init_dir}/.gdbinit', 'w') as f:
gdb_port = DEV_CONFIG_A['server_port'] - 3333
f.write(GDB_INIT_TEMPLATE.format(gdb_port=gdb_port))


def test_alloc():
"""Test tensor allocation on the device."""
if not tvm.runtime.enabled("micro_dev"):
return
shape = (1024,)
dtype = "float32"
with micro.Session(DEV_CONFIG_A):
ctx = tvm.micro_dev(0)
np_tensor = np.random.uniform(size=shape).astype(dtype)
micro_tensor = tvm.nd.array(np_tensor, ctx)
tvm.testing.assert_allclose(np_tensor, micro_tensor.asnumpy())


def test_add():
"""Test a module which performs addition."""
if not tvm.runtime.enabled("micro_dev"):
return
shape = (1024,)
dtype = "float32"

reset_gdbinit()

# Construct TVM expression.
tvm_shape = tvm.runtime.convert(shape)
A = te.placeholder(tvm_shape, name="A", dtype=dtype)
B = te.placeholder(tvm_shape, name="B", dtype=dtype)
C = te.compute(A.shape, lambda *i: A(*i) + B(*i), name="C")
s = te.create_schedule(C.op)

func_name = "fadd"
c_mod = tvm.build(s, [A, B, C], target="c", name=func_name)

with micro.Session(DEV_CONFIG_A) as sess:
micro_mod = micro.create_micro_mod(c_mod, DEV_CONFIG_A)
micro_func = micro_mod[func_name]
ctx = tvm.micro_dev(0)

a_np = np.random.uniform(size=shape).astype(dtype)
a = tvm.nd.array(a_np, ctx)
b_np = np.random.uniform(size=shape).astype(dtype)
b = tvm.nd.array(b_np, ctx)
c = tvm.nd.array(np.zeros(shape, dtype=dtype), ctx)
micro_func(a, b, c)

# ensure inputs weren't corrupted
tvm.testing.assert_allclose(
a.asnumpy(), a_np)
tvm.testing.assert_allclose(
b.asnumpy(), b_np)
# ensure output is correct
tvm.testing.assert_allclose(
c.asnumpy(), a.asnumpy() + b.asnumpy())


def test_workspace_add():
"""Test a module which uses a workspace to compute an intermediate value."""
if not tvm.runtime.enabled("micro_dev"):
return
shape = (1024,)
dtype = "float32"

reset_gdbinit()

# Construct TVM expression.
tvm_shape = tvm.runtime.convert(shape)
A = te.placeholder(tvm_shape, name="A", dtype=dtype)
B = te.placeholder(tvm_shape, name="B", dtype=dtype)
B = te.compute(A.shape, lambda *i: A(*i) + 1, name="B")
C = te.compute(A.shape, lambda *i: B(*i) + 1, name="C")
s = te.create_schedule(C.op)

func_name = "fadd_two_workspace"
c_mod = tvm.build(s, [A, C], target="c", name=func_name)

with micro.Session(DEV_CONFIG_A) as sess:
micro_mod = micro.create_micro_mod(c_mod, DEV_CONFIG_A)
micro_func = micro_mod[func_name]
ctx = tvm.micro_dev(0)
a_np = np.random.uniform(size=shape).astype(dtype)
a = tvm.nd.array(a_np, ctx)
c = tvm.nd.array(np.zeros(shape, dtype=dtype), ctx)
micro_func(a, c)

# ensure input wasn't corrupted
tvm.testing.assert_allclose(
a.asnumpy(), a_np)
# ensure output is correct
tvm.testing.assert_allclose(
c.asnumpy(), a.asnumpy() + 2.0)


def test_graph_runtime():
"""Test a program which uses the graph runtime."""
if not tvm.runtime.enabled("micro_dev"):
return
shape = (1024,)
dtype = "float32"

# Construct Relay program.
x = relay.var("x", relay.TensorType(shape=shape, dtype=dtype))
xx = relay.multiply(x, x)
z = relay.add(xx, relay.const(1.0))
func = relay.Function([x], z)

with micro.Session(DEV_CONFIG_A):
mod = relay_micro_build(func, DEV_CONFIG_A)

x_in = np.random.uniform(size=shape[0]).astype(dtype)
mod.run(x=x_in)
result = mod.get_output(0).asnumpy()

tvm.testing.assert_allclose(
mod.get_input(0).asnumpy(), x_in)
tvm.testing.assert_allclose(
result, x_in * x_in + 1.0)


def test_conv2d():
if not tvm.runtime.enabled("micro_dev"):
return

from tvm.relay import create_executor
from tvm.relay import transform

dshape = (1, 4, 16, 16)
dtype = 'int8'
func_name = 'fused_nn_conv2d'

reset_gdbinit()

# Construct Relay program.
x = relay.var("x", shape=dshape, dtype=dtype)
conv_expr = relay.nn.conv2d(
x, relay.var("w"),
kernel_size=(3, 3),
padding=(1, 1),
channels=4)
func = relay.Function(relay.analysis.free_vars(conv_expr), conv_expr)
mod = tvm.IRModule.from_expr(func)
mod = transform.InferType()(mod)

x_shape = list(map(lambda x: x.value, mod['main'].params[0].checked_type.shape))
w_shape = list(map(lambda x: x.value, mod['main'].params[1].checked_type.shape))
out_shape = list(map(lambda x: x.value, mod['main'].ret_type.shape))

with tvm.target.build_config(disable_vectorize=True):
graph, c_mod, params = relay.build(mod, target="c")

with micro.Session(DEV_CONFIG_A):
micro_mod = micro.create_micro_mod(c_mod, DEV_CONFIG_A)
candidate_func_name = func_name
for i in range(100):
try:
micro_func = micro_mod[candidate_func_name]
break
except tvm.TVMError as e:
candidate_func_name = f'{func_name}_{i}'
else:
assert False
ctx = tvm.micro_dev(0)

x_data = tvm.nd.array(np.random.uniform(size=x_shape).astype(dtype), ctx)
w_data = tvm.nd.array(np.random.uniform(size=w_shape).astype(dtype), ctx)
result = tvm.nd.array(np.zeros(shape=out_shape, dtype=dtype), ctx)
micro_func(x_data, w_data, result)

out_data = np.zeros(out_shape, dtype=dtype)
params = { 'x': x_data.asnumpy(), 'w': w_data.asnumpy() }
intrp = create_executor('debug')
expected_result = intrp.evaluate(mod['main'])(x_data, w_data)

tvm.testing.assert_allclose(result.asnumpy(), expected_result.asnumpy())


def test_interleave_sessions():
"""Test closing and reopening sessions."""
if not tvm.runtime.enabled("micro_dev"):
return
shape = (1024,)
dtype = "float32"

# Construct Relay add program.
x = relay.var("x", relay.TensorType(shape=shape, dtype=dtype))
ret = relay.add(x, relay.const(1.0))
add_const_func = relay.Function([x], ret)

sess_a = micro.Session(DEV_CONFIG_A)
sess_b = micro.Session(DEV_CONFIG_B)
with sess_a:
np_tensor_a = np.random.uniform(size=shape).astype(dtype)
micro_tensor_a = tvm.nd.array(np_tensor_a, tvm.micro_dev(0))
with sess_b:
np_tensor_b = np.random.uniform(size=shape).astype(dtype)
micro_tensor_b = tvm.nd.array(np_tensor_b, tvm.micro_dev(0))
with sess_a:
add_const_mod = relay_micro_build(add_const_func, DEV_CONFIG_A)
add_const_mod.run(x=micro_tensor_a)
add_result = add_const_mod.get_output(0).asnumpy()
tvm.testing.assert_allclose(
add_result, np_tensor_a + 1.0)
with sess_b:
add_const_mod = relay_micro_build(add_const_func, DEV_CONFIG_B)
add_const_mod.run(x=micro_tensor_b)
add_result = add_const_mod.get_output(0).asnumpy()
tvm.testing.assert_allclose(
add_result, np_tensor_b + 1.0)


def test_nested_sessions():
"""Test entering and exiting nested session contexts."""
if not tvm.runtime.enabled("micro_dev"):
return
shape = (1024,)
dtype = "float32"

# Construct Relay add program.
x = relay.var("x", relay.TensorType(shape=shape, dtype=dtype))
ret = relay.add(x, relay.const(1.0))
add_const_func = relay.Function([x], ret)

sess_a = micro.Session(DEV_CONFIG_A)
sess_b = micro.Session(DEV_CONFIG_B)
with sess_a:
np_tensor_a = np.random.uniform(size=shape).astype(dtype)
micro_tensor_a = tvm.nd.array(np_tensor_a, tvm.micro_dev(0))
with sess_b:
np_tensor_b = np.random.uniform(size=shape).astype(dtype)
micro_tensor_b = tvm.nd.array(np_tensor_b, tvm.micro_dev(0))
add_const_mod = relay_micro_build(add_const_func, DEV_CONFIG_A)
add_const_mod.run(x=micro_tensor_a)
add_result = add_const_mod.get_output(0).asnumpy()
tvm.testing.assert_allclose(
add_result, np_tensor_a + 1.0)


def test_inactive_session_use():
"""Test the use of objects allocated in a session that is no longer active."""
if not tvm.runtime.enabled("micro_dev"):
return
shape = (1024,)
dtype = "float32"

# Construct Relay add program.
x = relay.var("x", relay.TensorType(shape=shape, dtype=dtype))
ret = relay.add(x, relay.const(1.0))
add_const_func = relay.Function([x], ret)

sess_a = micro.Session(DEV_CONFIG_A)
sess_b = micro.Session(DEV_CONFIG_B)
with sess_a:
np_tensor_a = np.random.uniform(size=shape).astype(dtype)
micro_tensor_a = tvm.nd.array(np_tensor_a, tvm.micro_dev(0))
add_const_mod = relay_micro_build(add_const_func, DEV_CONFIG_A)

with sess_b:
# These objects belong to `sess_a`.
add_const_mod.run(x=micro_tensor_a)
add_result = add_const_mod.get_output(0).asnumpy()
tvm.testing.assert_allclose(
add_result, np_tensor_a + 1.0)


# TODO add workspace alloc/free stress test

if __name__ == "__main__":
test_alloc()
print()
print('finished alloc test')
input('[press enter to continue]')
test_add()
print()
print('finished add test')
input('[press enter to continue]')
test_workspace_add()
print()
print('finished workspace add test')
input('[press enter to continue]')
test_graph_runtime()
print()
print('finished graph runtime test')
input('[press enter to continue]')
test_conv2d()
print()
print('finished conv2d test')
input('[press enter to continue]')
# disable for now as these are currently broken
#test_interleave_sessions()
#print()
#print('finished interleaved sessions test')
#input('[press enter to continue]')
# test_nested_sessions()
#print()
#print('finished nested sessions test')
#input('[press enter to continue]')
test_inactive_session_use()
print()
print('finished use inactive session test')
input('[press enter to continue]')