Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MXNET]DepthToSpace & SpaceToDepth Operator #5408

Merged
merged 1 commit into from
Apr 23, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 16 additions & 0 deletions python/tvm/relay/frontend/mxnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -1073,6 +1073,20 @@ def _mx_one_hot(inputs, attrs):
return _op.one_hot(indices, on_value, off_value, depth, -1, dtype)


def _mx_depth_to_space(inputs, attrs):
assert len(inputs) == 1
new_attrs = {}
new_attrs["block_size"] = attrs.get_int("block_size")
return _op.nn.depth_to_space(*inputs, **new_attrs)


def _mx_space_to_depth(inputs, attrs):
assert len(inputs) == 1
new_attrs = {}
new_attrs["block_size"] = attrs.get_int("block_size")
return _op.nn.space_to_depth(*inputs, **new_attrs)


def _mx_contrib_fifo_buffer(inputs, attrs):
new_attrs = {}
new_attrs['axis'] = attrs.get_int('axis')
Expand Down Expand Up @@ -1854,6 +1868,8 @@ def _get_bias_requantize_scale(_inputs, _data_scale, _kernel_scale):
"make_loss" : _mx_make_loss,
"_contrib_div_sqrt_dim": _mx_contrib_div_sqrt_dim,
"one_hot" : _mx_one_hot,
"depth_to_space" : _mx_depth_to_space,
"space_to_depth" : _mx_space_to_depth,
# vision
"_contrib_BilinearResize2D" : _mx_resize,
"_contrib_MultiBoxPrior" : _mx_multibox_prior,
Expand Down
34 changes: 34 additions & 0 deletions tests/python/frontend/mxnet/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -995,6 +995,38 @@ def _verify_swap_axis(in_shape, out_shape, dim1, dim2):
# _verify_swap_axis((4, 5), (5, 4), 0, 0)


def test_forward_depth_to_space():
def verify(shape, blocksize=2):
x = np.random.uniform(size=shape).astype("float32")
ref_res = mx.nd.depth_to_space(mx.nd.array(x), blocksize)
mx_sym = mx.sym.depth_to_space(mx.sym.var("x"), blocksize)
shape_dict = {"x": x.shape, }
mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict)
for target, ctx in ctx_list():
for kind in ["graph", "debug"]:
intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target)
op_res = intrp.evaluate()(x)
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy(), rtol=1e-3, atol=1e-5)

verify((1, 18, 3, 3), 3)


def test_forward_space_to_depth():
def verify(shape, blocksize=2):
x = np.random.uniform(size=shape).astype("float32")
ref_res = mx.nd.space_to_depth(mx.nd.array(x), blocksize)
mx_sym = mx.sym.space_to_depth(mx.sym.var("x"), blocksize)
shape_dict = {"x": x.shape, }
mod, _ = relay.frontend.from_mxnet(mx_sym, shape_dict)
for target, ctx in ctx_list():
for kind in ["graph", "debug"]:
intrp = relay.create_executor(kind, mod=mod, ctx=ctx, target=target)
op_res = intrp.evaluate()(x)
tvm.testing.assert_allclose(op_res.asnumpy(), ref_res.asnumpy(), rtol=1e-3, atol=1e-5)

verify((1, 1, 9, 9), 3)


if __name__ == '__main__':
test_forward_mlp()
test_forward_vgg()
Expand Down Expand Up @@ -1047,6 +1079,8 @@ def _verify_swap_axis(in_shape, out_shape, dim1, dim2):
test_forward_instance_norm()
test_forward_layer_norm()
test_forward_one_hot()
test_forward_depth_to_space()
test_forward_space_to_depth()
test_forward_convolution()
test_forward_deconvolution()
test_forward_cond()
Expand Down