Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Frontend][TFLite] support for FILL and SPLIT_V operators #5330

Merged
merged 5 commits into from
Apr 29, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 46 additions & 0 deletions python/tvm/relay/frontend/tflite.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,6 +79,7 @@ def __init__(self, model, subgraph, exp_tab):
'ELU': self.convert_elu,
'EQUAL': self.convert_equal,
'EXP': self.convert_exp,
'FILL': self.convert_fill,
'FLOOR_DIV': self.convert_floor_div,
'FLOOR_MOD': self.convert_floor_mod,
'FLOOR': self.convert_floor,
Expand Down Expand Up @@ -123,6 +124,7 @@ def __init__(self, model, subgraph, exp_tab):
'SPACE_TO_BATCH_ND': self.convert_space_to_batch_nd,
'SPACE_TO_DEPTH': self.convert_space_to_depth,
'SPLIT': self.convert_split,
'SPLIT_V': self.convert_split_v,
'SQRT': self.convert_sqrt,
'SQUARE': self.convert_square,
'SQUARED_DIFFERENCE': self.convert_squared_difference,
Expand Down Expand Up @@ -1208,6 +1210,21 @@ def convert_zeros_like(self, op):

return out

def convert_fill(self, op):
"""Convert TFLite FILL"""
input_tensors = self.get_input_tensors(op)
assert len(input_tensors) == 2, "input tensors length should be 2"

if self.has_expr(input_tensors[0].tensor_idx):
raise tvm.error.OpNotImplemented("For dims parameter of Fill operator,"
" only constant values are supported.")

in_dims = list(self.get_tensor_value(input_tensors[0]))
in_value_expr = self.get_expr(input_tensors[1].tensor_idx)
out = _op.full(in_value_expr, in_dims)

return out

def _convert_reduce(self, relay_op, op):
"""Generic method to Convert TFLite MEAN operators"""
try:
Expand Down Expand Up @@ -1613,6 +1630,35 @@ def convert_split(self, op):

return out

def convert_split_v(self, op):
"""SPLIT_V implementation."""
input_tensors = self.get_input_tensors(op)

assert len(input_tensors) == 3, "input tensors length should be 3"

input_tensor = input_tensors[0]
input_tensor_idx = input_tensor.tensor_idx
in_expr = self.get_expr(input_tensor_idx)

if self.has_expr(input_tensors[1].tensor_idx):
raise tvm.error.OpNotImplemented("For size_splits parameter of SPLIT_V operator, "
"only constant values are supported.")
size_splits = list(self.get_tensor_value(input_tensors[1]))
size_splits = tuple(np.cumsum(size_splits)[:-1])

axis_tensor = input_tensors[2]
split_axis = self.get_tensor_value(axis_tensor)

out = _op.split(in_expr, size_splits, axis=int(split_axis))
# Relay does not like a TupleWrapper of 1 element, further this
# only shows up with tf1.13 if we use a split with num_splits==1.
# In tf 1.14 this doesn't appear as it is automatically a reshape
# operation.
if isinstance(out, _expr.TupleWrapper) and out.size == 1:
out = out[0]

return out

def convert_slice(self, op):
"""Convert TFLite SLICE"""
input_tensors = self.get_input_tensors(op)
Expand Down
57 changes: 50 additions & 7 deletions tests/python/frontend/tflite/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -216,15 +216,19 @@ def with_fused_activation_function(input_tensor, fn_name):
return math_ops.tanh(input_tensor)
raise AssertionError("Unknown fused_activation_function {}".format(fn_name))

def _test_split(in_shape, axis, num_Splits, dtype):
'''internal split tester taking as parameters in_shape, number of tensors to split into
and dtype (data type)'''

def _test_split(in_shape, axis, num_splits, dtype):
"""internal split tester taking as parameters in_shape, number of tensors to split into
and dtype (data type)"""

np_data = np.random.uniform(-5, 5, size=in_shape).astype(dtype)
with tf.Graph().as_default():
in_data = array_ops.placeholder(shape=in_shape, dtype=dtype)
out = array_ops.split(in_data, num_Splits, axis=axis)
out_names = ['out_' + str(n) + ':0' for n in range(num_Splits)]
compare_tflite_with_tvm([np_data], ['Placeholder:0'], [in_data], out,
in_data = array_ops.placeholder(shape=in_shape, dtype=dtype, name="in_data")
out = array_ops.split(in_data, num_splits, axis=axis)
num_splits = len(num_splits) if isinstance(num_splits, list) \
else num_splits
out_names = ['out_' + str(n) + ':0' for n in range(num_splits)]
compare_tflite_with_tvm([np_data], ['in_data'], [in_data], out,
out_names=out_names)

def test_forward_split():
Expand Down Expand Up @@ -252,6 +256,9 @@ def test_forward_split():
_test_split((1, 6, 3, 5), -3, 3, 'float32')
_test_split((1, 3, 6, 5), -2, 3, 'float32')
_test_split((1, 3, 5, 6), -1, 3, 'float32')
# size_splits split
_test_split((6,), 0, [1, 2, 3], 'float32')
_test_split((3, 6, 4), -2, [1, 4, 1], 'float32')

#######################################################################
# slice
Expand Down Expand Up @@ -1185,6 +1192,39 @@ def test_forward_zeros_like():
""" ZEROS LIKE """
_test_zeros_like(np.arange(6.0, dtype=np.float32).reshape((1, 6)))


#######################################################################
# Fill
# ----

def _test_fill(dims, value_data, value_dtype):
""" Use the fill op to create a tensor of value_data with constant dims."""

value_data = np.array(value_data, dtype=value_dtype)
# TF 1.13 TFLite convert method does not accept empty shapes
if package_version.parse(tf.VERSION) >= package_version.parse('1.14.0'):
with tf.Graph().as_default():
value = array_ops.placeholder(dtype=value_dtype, name="value", shape=[])
out = tf.fill(dims, value)
compare_tflite_with_tvm([value_data], ["value"], [value], [out])

with tf.Graph().as_default():
input1 = array_ops.placeholder(dtype=value_dtype, name="input1", shape=dims)
# Fill op gets converted to static tensor during conversion
out = tf.fill(dims, value_data)
out1 = tf.add(out, input1)
input1_data = np.random.uniform(0, 5, size=dims).astype(value_dtype)
compare_tflite_with_tvm([input1_data], ["input1"], [input1], [out1])


def test_forward_fill():
maheshambule marked this conversation as resolved.
Show resolved Hide resolved
""" Test FILL op """

_test_fill((1, 2, 2, 4), 5, "int32")
_test_fill((1, 2, 2, 4), 5, "float32")
_test_fill((5, ), 5, "int32")


#######################################################################
# Reduce
# ------
Expand Down Expand Up @@ -1954,6 +1994,9 @@ def test_forward_mediapipe_hand_landmark():
# Zeros Like
test_forward_zeros_like()

# Fill
test_forward_fill()

# Reduce
test_all_reduce()

Expand Down