Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[PYTORCH]Reduce_ops support added #5308

Merged
merged 3 commits into from
Apr 13, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
49 changes: 48 additions & 1 deletion python/tvm/relay/frontend/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -934,7 +934,50 @@ def _impl(inputs, input_types):
def _reduce(name):
def _impl(inputs, input_types):
data = inputs[0]
return get_relay_op(name)(data)
axis = None
keepdims = False

if len(inputs) > 2: # default, torch have only data, axis=None, keepdims=False
if isinstance(inputs[1], int):
axis = int(inputs[1])
else:
axis = list(_infer_shape(inputs[1]))
keepdims = bool(inputs[2])

return get_relay_op(name)(data, axis=axis, keepdims=keepdims)

return _impl

def _std():
def _impl(inputs, input_types):
data = inputs[0]
axis = list(_infer_shape(inputs[1]))
keepdims = bool(inputs[3])
unbiased = bool(inputs[2])

if unbiased:
msg = "Currently only supports standard-deviation calculated via the biased "\
"estimator. Pytorch's Bessel's correction is not supported."
raise NotImplementedError(msg)

return _op.reduce.std(data, axis=axis, keepdims=keepdims)

return _impl

def _variance():
def _impl(inputs, input_types):
data = inputs[0]
axis = list(_infer_shape(inputs[1]))
keepdims = bool(inputs[3])
unbiased = bool(inputs[2])

if unbiased:
msg = "Currently only supports standard-deviation calculated via the biased "\
"estimator. Pytorch's Bessel's correction is not supported."
raise NotImplementedError(msg)

return _op.reduce.variance(data, axis=axis, keepdims=keepdims)

return _impl

def _mean():
Expand Down Expand Up @@ -1381,6 +1424,10 @@ def _get_convert_map(prelude):
"aten::permute" : _transpose(prelude),
"aten::sum" : _reduce("sum"),
"aten::prod" : _reduce("prod"),
"aten::argmin" : _reduce("argmin"),
"aten::argmax" : _reduce("argmax"),
"aten::std" : _std(),
"aten::var" : _variance(),
"aten::sqrt" : _sqrt(),
'aten::floor' : _floor(),
"aten::detach" : _identity(),
Expand Down
2 changes: 1 addition & 1 deletion tests/python/frontend/pytorch/qnn_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -396,7 +396,7 @@ def get_imagenet_input():
mean_abs_diff = np.mean(np.abs(tvm_result - pt_result))
num_identical = np.sum(tvm_result == pt_result)
pt_top3_labels = np.argsort(pt_result)[::-1][:3]
tvm_top3_labels = np.argsort(pt_result)[::-1][:3]
tvm_top3_labels = np.argsort(tvm_result)[::-1][:3]

print("\nModel name: %s" % model_name)
print("PyTorch top3 label:", pt_top3_labels)
Expand Down
168 changes: 168 additions & 0 deletions tests/python/frontend/pytorch/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -1279,6 +1279,168 @@ def forward(self, xs):
verify_script_model(RNNLoop().eval(), [(10, 10, 4)])


def test_forward_reduce_sum():
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10]

class ReduceSum1(Module):
def forward(self, *args):
return args[0].sum(1)

class ReduceSum2(Module):
def forward(self, *args):
return args[0].sum(dim=1, keepdim=False)

class ReduceSum3(Module):
def forward(self, *args):
return args[0].sum(dim=2, keepdim=True)

class ReduceSum4(Module):
def forward(self, *args):
return args[0].sum(dim=(2,3), keepdim=True)

class ReduceSum5(Module):
def forward(self, *args):
return args[0].sum(dim=(2,3), keepdim=False)

input_data = torch.rand(input_shape).float()
verify_model(ReduceSum1().float().eval(), input_data=input_data)
verify_model(ReduceSum2().float().eval(), input_data=input_data)
verify_model(ReduceSum3().float().eval(), input_data=input_data)
verify_model(ReduceSum4().float().eval(), input_data=input_data)
verify_model(ReduceSum5().float().eval(), input_data=input_data)


def test_forward_reduce_prod():
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10]

class ReduceProd1(Module):
def forward(self, *args):
return args[0].prod(1)

class ReduceProd2(Module):
def forward(self, *args):
return args[0].prod(dim=1, keepdim=False)

class ReduceProd3(Module):
def forward(self, *args):
return args[0].prod(dim=2, keepdim=True)

input_data = torch.rand(input_shape).float()
verify_model(ReduceProd1().float().eval(), input_data=input_data)
verify_model(ReduceProd2().float().eval(), input_data=input_data)
verify_model(ReduceProd3().float().eval(), input_data=input_data)


def test_forward_argmin():
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10]

class ArgMin1(Module):
def forward(self, *args):
return args[0].argmin(1)

class ArgMin2(Module):
def forward(self, *args):
return args[0].argmin(dim=1, keepdim=False)

class ArgMin3(Module):
def forward(self, *args):
return args[0].argmin(dim=2, keepdim=True)

input_data = torch.rand(input_shape).float()
verify_model(ArgMin1().float().eval(), input_data=input_data)
verify_model(ArgMin2().float().eval(), input_data=input_data)
verify_model(ArgMin3().float().eval(), input_data=input_data)


def test_forward_argmax():
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10]

class ArgMax1(Module):
def forward(self, *args):
return args[0].argmax(1)

class ArgMax2(Module):
def forward(self, *args):
return args[0].argmax(dim=1, keepdim=False)

class ArgMax3(Module):
def forward(self, *args):
return args[0].argmax(dim=2, keepdim=True)

input_data = torch.rand(input_shape).float()
verify_model(ArgMax1().float().eval(), input_data=input_data)
verify_model(ArgMax2().float().eval(), input_data=input_data)
verify_model(ArgMax3().float().eval(), input_data=input_data)


def test_forward_std():
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10]

class Std1(Module):
def forward(self, *args):
return args[0].std(1, unbiased=False)

class Std2(Module):
def forward(self, *args):
return args[0].std(dim=1, keepdim=False, unbiased=False)

class Std3(Module):
def forward(self, *args):
return args[0].std(dim=2, keepdim=True, unbiased=False)

class Std4(Module):
def forward(self, *args):
return args[0].std(dim=(2,3), keepdim=True, unbiased=False)

class Std5(Module):
def forward(self, *args):
return args[0].std(dim=(2,3), keepdim=False, unbiased=False)

input_data = torch.rand(input_shape).float()
verify_model(Std1().float().eval(), input_data=input_data)
verify_model(Std2().float().eval(), input_data=input_data)
verify_model(Std3().float().eval(), input_data=input_data)
verify_model(Std4().float().eval(), input_data=input_data)
verify_model(Std5().float().eval(), input_data=input_data)


def test_forward_variance():
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10]

class Variance1(Module):
def forward(self, *args):
return args[0].var(1, unbiased=False)

class Variance2(Module):
def forward(self, *args):
return args[0].var(dim=1, keepdim=False, unbiased=False)

class Variance3(Module):
def forward(self, *args):
return args[0].var(dim=2, keepdim=True, unbiased=False)

class Variance4(Module):
def forward(self, *args):
return args[0].var(dim=(2,3), keepdim=True, unbiased=False)

class Variance5(Module):
def forward(self, *args):
return args[0].var(dim=(2,3), keepdim=False, unbiased=False)

input_data = torch.rand(input_shape).float()
verify_model(Variance1().float().eval(), input_data=input_data)
verify_model(Variance2().float().eval(), input_data=input_data)
verify_model(Variance3().float().eval(), input_data=input_data)
verify_model(Variance4().float().eval(), input_data=input_data)
verify_model(Variance5().float().eval(), input_data=input_data)


if __name__ == "__main__":
# Single operator tests
test_forward_add()
Expand All @@ -1291,6 +1453,12 @@ def forward(self, xs):
test_forward_squeeze()
test_forward_unsqueeze()
test_forward_concatenate()
test_forward_reduce_sum()
test_forward_reduce_prod()
test_forward_argmin()
test_forward_argmax()
test_forward_std()
test_forward_variance()
test_forward_relu()
test_forward_prelu()
test_forward_leakyrelu()
Expand Down