Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[PYTORCH]Activations for pytorch #5194

Merged
merged 2 commits into from
Apr 1, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 31 additions & 0 deletions python/tvm/relay/frontend/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -193,6 +193,33 @@ def _impl(inputs, input_types):
return _op.nn.relu(data)
return _impl

def _prelu():
def _impl(inputs, input_types):
data = inputs[0]
alpha = inputs[1]
return _op.nn.prelu(data, alpha)
return _impl

def _leaky_relu():
def _impl(inputs, input_types):
data = inputs[0]
alpha = int(inputs[1])
return _op.nn.leaky_relu(data, alpha)
return _impl

def _elu():
def _impl(inputs, input_types):
data = inputs[0]
alpha = _expr.const(int(inputs[1]), dtype='float32')
return alpha * _op.nn.relu(alpha - _op.exp(data)) + _op.nn.relu(data)
return _impl

def _log_sigmoid():
def _impl(inputs, input_types):
data = inputs[0]
return _op.log(_op.tensor.sigmoid(data))
return _impl

def _adaptive_avg_pool_2d():
def _impl(inputs, input_types):
data = inputs[0]
Expand Down Expand Up @@ -921,6 +948,10 @@ def _wrap_const(c):
"aten::select" : _select(),
"aten::relu" : _relu(),
"aten::relu_" : _relu(),
"aten::prelu" : _prelu(),
"aten::leaky_relu" : _leaky_relu(),
"aten::elu" : _elu(),
"aten::log_sigmoid" : _log_sigmoid(),
"aten::adaptive_avg_pool2d" : _adaptive_avg_pool_2d(),
"aten::adaptive_max_pool2d" : _adaptive_max_pool_2d(),
"aten::max_pool2d" : _maxpool_2d(),
Expand Down
71 changes: 33 additions & 38 deletions tests/python/frontend/pytorch/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -327,29 +327,39 @@ def forward(self, *args):
def test_forward_relu():
torch.set_grad_enabled(False)
input_shape = [10, 10]

class ReLU1(Module):
def forward(self, *args):
return torch.nn.ReLU()(args[0])

input_data = torch.rand(input_shape).float()
verify_model(ReLU1().float().eval(), input_data=input_data)
verify_model(torch.nn.ReLU().eval(), input_data=input_data)

def test_forward_adaptiveavgpool():
def test_forward_prelu():
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10]
input_data = torch.rand(input_shape).float()
verify_model(torch.nn.PReLU(num_parameters=3).eval(), input_data=input_data)

class AdaptiveAvgPool2D1(Module):
def forward(self, *args):
return torch.nn.AdaptiveAvgPool2d([1, 1])(args[0])
def test_forward_leakyrelu():
torch.set_grad_enabled(False)
input_shape = [10, 10]
input_data = torch.rand(input_shape).float()
verify_model(torch.nn.LeakyReLU(negative_slope=0.05).eval(), input_data=input_data)

class AdaptiveAvgPool2D2(Module):
def forward(self, *args):
return torch.nn.AdaptiveAvgPool2d([10, 10])(args[0])
def test_forward_elu():
torch.set_grad_enabled(False)
input_shape = [10, 10]
input_data = torch.rand(input_shape).float()
verify_model(torch.nn.ELU(alpha=1.3).eval(), input_data=input_data)

def test_forward_log_sigmoid():
torch.set_grad_enabled(False)
input_shape = [10, 10]
input_data = torch.rand(input_shape).float()
verify_model(AdaptiveAvgPool2D1().float().eval(), input_data=input_data)
verify_model(AdaptiveAvgPool2D2().float().eval(), input_data=input_data)
verify_model(torch.nn.LogSigmoid().eval(), input_data=input_data)

masahi marked this conversation as resolved.
Show resolved Hide resolved
def test_forward_adaptiveavgpool():
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10]
input_data = torch.rand(input_shape).float()
verify_model(torch.nn.AdaptiveAvgPool2d([1, 1]).eval(), input_data=input_data)
verify_model(torch.nn.AdaptiveAvgPool2d([10, 10]).eval(), input_data=input_data)

def test_forward_maxpool2d():
torch.set_grad_enabled(False)
Expand Down Expand Up @@ -406,28 +416,19 @@ def test_forward_avgpool():
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10]

class AvgPool2D1(Module):
def forward(self, *args):
return torch.nn.AvgPool2d(kernel_size=[10, 10])(args[0])

class AvgPool2D2(Module):
def forward(self, *args):
return torch.nn.functional.avg_pool2d(args[0], kernel_size=[10, 10])

input_data = torch.rand(input_shape).float()
verify_model(AvgPool2D1().float().eval(), input_data=input_data)
verify_model(torch.nn.AvgPool2d(kernel_size=[10, 10]).eval(), input_data=input_data)
verify_model(AvgPool2D2().float().eval(), input_data=input_data)

def test_forward_hardtanh():
torch.set_grad_enabled(False)
input_shape = [10]

class HardTanh1(Module):
def forward(self, *args):
return torch.nn.Hardtanh()(args[0])

input_data = torch.rand(input_shape).float()
verify_model(HardTanh1().float().eval(), input_data=input_data)
verify_model(torch.nn.Hardtanh().eval(), input_data=input_data)

def test_forward_conv():
torch.set_grad_enabled(False)
Expand Down Expand Up @@ -482,13 +483,8 @@ def test_forward_conv_transpose():
def test_forward_threshold():
torch.set_grad_enabled(False)
input_shape = [1, 3]

class Threshold1(Module):
def forward(self, *args):
return torch.nn.Threshold(0, 0)(args[0])

input_data = torch.rand(input_shape).float()
verify_model(Threshold1().float().eval(), input_data=input_data)
verify_model(torch.nn.Threshold(0, 0).float().eval(), input_data=input_data)

def test_forward_contiguous():
torch.set_grad_enabled(False)
Expand Down Expand Up @@ -595,13 +591,8 @@ def forward(self, *args):
def test_forward_sigmoid():
torch.set_grad_enabled(False)
input_shape = [1, 3, 10, 10]

class Sigmoid1(Module):
def forward(self, *args):
return torch.nn.Sigmoid()(args[0])

input_data = torch.rand(input_shape).float()
verify_model(Sigmoid1().float().eval(), input_data=input_data)
verify_model(torch.nn.Sigmoid().eval(), input_data=input_data)

def test_forward_dense():
torch.set_grad_enabled(False)
Expand Down Expand Up @@ -1076,6 +1067,10 @@ def forward(self, xs):
test_forward_unsqueeze()
test_forward_concatenate()
test_forward_relu()
test_forward_prelu()
test_forward_leakyrelu()
test_forward_elu()
test_forward_log_sigmoid()
test_forward_adaptiveavgpool()
test_forward_maxpool2d()
test_forward_maxpool1d()
Expand Down