Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Torch, QNN] Add missing upcast to uint8 avg_pool conversion #5089

Merged
merged 2 commits into from
Mar 18, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 15 additions & 7 deletions python/tvm/relay/frontend/pytorch.py
Original file line number Diff line number Diff line change
Expand Up @@ -172,7 +172,7 @@ def func(x):
return _op.nn.adaptive_avg_pool2d(x, output_size=output_size)

if input_types[0] == "quint8":
return qnn_torch.quantized_adaptive_avg_2d(data, func)
return qnn_torch.apply_with_upcast(data, func)

return func(data)

Expand Down Expand Up @@ -484,14 +484,22 @@ def _impl(inputs, input_types):
ceil_mode = int(inputs[4])
count_include_pad = int(inputs[5])

return _op.nn.avg_pool2d(data,
pool_size=pool_size,
strides=strides,
padding=padding,
ceil_mode=ceil_mode,
count_include_pad=count_include_pad)
def func(x):
return _op.nn.avg_pool2d(x,
pool_size=pool_size,
strides=strides,
padding=padding,
ceil_mode=ceil_mode,
count_include_pad=count_include_pad)

if input_types[0] == "quint8":
return qnn_torch.apply_with_upcast(data, func)

return func(data)

return _impl


def _dropout():
def _impl(inputs, input_types):
data = inputs[0]
Expand Down
5 changes: 2 additions & 3 deletions python/tvm/relay/frontend/qnn_torch.py
Original file line number Diff line number Diff line change
Expand Up @@ -359,10 +359,9 @@ def add_quant_params(params, quant_params):
params[qparam.bias_var.name_hint] = tvm.nd.array(qparam.bias)


def quantized_adaptive_avg_2d(data, func_fp32):
# this follows tflite impl
def apply_with_upcast(data, func):
inp = _op.cast(data, dtype="int32")
out = func_fp32(inp)
out = func(inp)
return _op.cast(out, "uint8")


Expand Down
15 changes: 13 additions & 2 deletions tests/python/frontend/pytorch/qnn_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -218,7 +218,6 @@ def fuse_model(self):
class UpsamplingBilinear(nn.Module):
def __init__(self):
super().__init__()
self.relu = QuantWrapper(nn.ReLU())
self.quant = QuantStub()
self.dequant = DeQuantStub()

Expand All @@ -233,12 +232,25 @@ def fuse_model(self):
pass


class AvgPool2d(nn.Module):
def __init__(self):
super().__init__()
self.pool = QuantWrapper(nn.AvgPool2d(kernel_size=2))

def forward(self, x):
return self.pool(x)

def fuse_model(self):
pass


def test_quantized_modules():
imagenet_ishape = (1, 3, 224, 224)

qmodules = [
("relu", imagenet_ishape, ReLU(), False),
("upsample bilinear", (1, 3, 64, 64), UpsamplingBilinear(), False),
("avgpool", imagenet_ishape, AvgPool2d(), False),
]

for per_channel in [False, True]:
Expand Down Expand Up @@ -276,7 +288,6 @@ def test_quantized_modules():
pt_result = script_module(inp.clone()).numpy()

input_name = get_graph_input_names(script_module)[0]

runtime = get_tvm_runtime(script_module, input_name, ishape)
runtime.set_input(input_name, inp.numpy().copy())
runtime.run()
Expand Down