Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[TOP] Initial Schedule of MobileNet on Rasp #496

Merged
merged 3 commits into from
Sep 27, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 12 additions & 1 deletion topi/python/topi/nn/conv2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,8 +21,8 @@
Im2ColPack = namedtuple('Im2ColPack',
['vp', 'vq', 'ba', 'bc', 'unroll'])

# workloads of resnet18 on imagenet
_WORKLOADS = [
# workloads of resnet18 on imagenet
Workload(224, 224, 3, 64, 7, 7, 3, 3, 2, 2),
Workload(56, 56, 64, 64, 3, 3, 1, 1, 1, 1),
Workload(56, 56, 64, 64, 1, 1, 0, 0, 1, 1),
Expand All @@ -35,6 +35,17 @@
Workload(14, 14, 256, 512, 3, 3, 1, 1, 2, 2),
Workload(14, 14, 256, 512, 1, 1, 0, 0, 2, 2),
Workload(7, 7, 512, 512, 3, 3, 1, 1, 1, 1),
# workloads of mobile net on imagenet
Workload(224, 224, 3, 32, 3, 3, 1, 1, 2, 2),
Workload(112, 112, 32, 64, 1, 1, 0, 0, 1, 1),
Workload(56, 56, 64, 128, 1, 1, 0, 0, 1, 1),
Workload(56, 56, 128, 128, 1, 1, 0, 0, 1, 1),
Workload(28, 28, 128, 256, 1, 1, 0, 0, 1, 1),
Workload(28, 28, 256, 256, 1, 1, 0, 0, 1, 1),
Workload(14, 14, 256, 512, 1, 1, 0, 0, 1, 1),
Workload(14, 14, 512, 512, 1, 1, 0, 0, 1, 1),
Workload(7, 7, 512, 1024, 1, 1, 0, 0, 1, 1),
Workload(7, 7, 1024, 1024, 1, 1, 0, 0, 1, 1),
]

# platform specific schedule
Expand Down
1 change: 1 addition & 0 deletions topi/python/topi/rasp/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,3 +3,4 @@
from __future__ import absolute_import as _abs

from .conv2d import *
from .depthwise_conv2d import *
11 changes: 11 additions & 0 deletions topi/python/topi/rasp/conv2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,17 @@
Im2ColPack(7, 4, 1, 16, True),
Im2ColPack(7, 4, 1, 8, False),
Im2ColPack(7, 4, 1, 16, False),

SpatialPack(2, 2, 4, 28, 1, True),
SpatialPack(1, 4, 8, 14, 1, False),
SpatialPack(1, 2, 16, 8, 1, True),
SpatialPack(1, 4, 8, 8, 8, True),
SpatialPack(2, 2, 8, 1, 1, False),
SpatialPack(1, 4, 8, 4, 8, False),
SpatialPack(2, 2, 8, 1, 4, False),
SpatialPack(2, 2, 8, 1, 8, False),
SpatialPack(1, 1, 16, 1, 4, False),
SpatialPack(1, 1, 4, 1, 4, True),
]

def _schedule_conv2d(wkl):
Expand Down
64 changes: 64 additions & 0 deletions topi/python/topi/rasp/depthwise_conv2d.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
# pylint: disable=invalid-name,unused-variable
"""Schedule for depthwise_conv2d with auto fusion"""
import tvm
from .. import tag

def _schedule(s, data, data_pad, kernel, output, last):
A, B, C = data, kernel, output
A0 = data_pad
C0 = last

_, c, h, w = s[C].op.axis
dh, dw = s[C].op.reduce_axis

oh, ow, ih, iw = s[C].tile(h, w, 2, 4)
s[C].reorder(oh, ow, dh, dw, ih, iw)
s[C].unroll(ih)
s[C].vectorize(iw)

s[C].parallel(c)
s[C].pragma(c, "parallel_launch_point")
s[C].pragma(c, "parallel_stride_pattern")
s[C].pragma(c, "parallel_barrier_when_finish")
return s



def schedule_depthwise_conv2d(outs):
"""Schedule for depthwise_conv2d nchw forward.

Parameters
----------
outs: Array of Tensor
The computation graph description of depthwise_conv2d
in the format of an array of tensors.

Returns
-------
s: Schedule
The computation schedule for depthwise_conv2d nchw.
"""
outs = [outs] if isinstance(outs, tvm.tensor.Tensor) else outs
s = tvm.create_schedule([x.op for x in outs])

def traverse(op):
# inline all one-to-one-mapping operators except the last stage (output)
if tag.is_broadcast(op.tag):
if op not in s.outputs:
s[op].compute_inline()
for tensor in op.input_tensors:
if tensor.op.input_tensors:
traverse(tensor.op)
# schedule depthwise_conv2d
if op.tag == 'depthwise_conv2d_nchw':
output = op.output(0)
kernel = op.input_tensors[1]
data = op.input_tensors[0]
data_pad = None
if isinstance(data.op, tvm.tensor.ComputeOp) and "pad" in data.op.tag:
data_pad = data
data = data_pad.op.input_tensors[0]
_schedule(s, data, data_pad, kernel, output, outs[0])

traverse(outs[0].op)
return s