Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[VTA] YoloV3 Support #4887

Merged
merged 8 commits into from
Feb 26, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
117 changes: 109 additions & 8 deletions vta/python/vta/top/graphpack.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,8 @@ def run_opt_pass(expr, opt_pass):
return entry if isinstance(expr, relay.Function) else entry.body

def _to_shape(shape):
""" convert shape into tuple.
"""
return tuple(int(sh) for sh in shape)

def _pack_batch_channel(data, dshape, bfactor, cfactor):
Expand All @@ -55,6 +57,49 @@ def _unpack_batch_channel(data, old_shape):
return data


def _const_shape_match(data, dshape, cfactor_out):
huajsj marked this conversation as resolved.
Show resolved Hide resolved
""" Pad the constant if the shape[0] not divisible by cfactor_out.
"""
assert len(dshape) == 3
pad_width = int(dshape[0]) % cfactor_out
if pad_width != 0:
pad_width = cfactor_out -pad_width
data = op.nn.pad(data, [[0, pad_width], [0, 0], [0, 0]])
dshape = tuple([dshape[0] + pad_width, dshape[1], dshape[2]])
return data, dshape

def _weight_shape_match(data, dshape, channels, cfactor_out, transpose=False):
""" Pad the weight if the shape[0] not divisible by cfactor_out.
"""
assert len(dshape) == 4
pad_width = int(dshape[0]) % cfactor_out
huajsj marked this conversation as resolved.
Show resolved Hide resolved
channels_pad = int(channels) % cfactor_out
if pad_width != 0:
pad_width = cfactor_out - pad_width
data = op.nn.pad(data, [[0, pad_width], [0, 0], [0, 0], [0, 0]])
dshape = tuple([dshape[0] + pad_width, dshape[1], dshape[2], dshape[3]])

if channels_pad != 0:
channels = channels + (cfactor_out - channels_pad)

return data, dshape, channels

def _weight_shape_match_transpose(data, dshape, channels, cfactor_out):
""" Pad the weight if the shape[1] not divisible by cfactor_out.
huajsj marked this conversation as resolved.
Show resolved Hide resolved
"""
assert len(dshape) == 4
pad_width = int(dshape[1]) % cfactor_out
channels_pad = int(channels) % cfactor_out
if pad_width != 0:
pad_width = cfactor_out - pad_width
data = op.nn.pad(data, [[0, 0], [0, pad_width], [0, 0], [0, 0]])
dshape = tuple(dshape[0], [dshape[1] + pad_width, dshape[2], dshape[3]])

if channels_pad != 0:
channels = channels + (cfactor_out - channels_pad)

return data, dshape, channels

def _pack_weight(data, dshape, cfactor):
"""Pack the weight into packed format.
"""
Expand Down Expand Up @@ -106,10 +151,19 @@ def _pack_const(data, dshape, dtype, bfactor, cfactor):
return data


def _get_shape(node):
"""Get the shape of a node.
def _get_tensor_shape(node):
"""Get node shape.
"""
return _to_shape(node.checked_type.shape)
if isinstance(node.checked_type, relay.ty.TensorType):
return _to_shape(node.checked_type.shape)
return []

def _get_tensor_type(node):
"""Get node type.
"""
if isinstance(node.checked_type, relay.ty.TensorType):
return node.checked_type.dtype
return "float32"

def _operator_idx_inc(expr, count_meta, operator_current_idx):
"""Increase operator index
Expand All @@ -136,14 +190,17 @@ def __init__(self, bfactor, cfactor, weight_bits):
self.add = op.op.get("add")
self.multiply = op.op.get("multiply")
self.bias_add = op.op.get("nn.bias_add")
self.pad = op.op.get("nn.pad")
self.upsampling = op.op.get("nn.upsampling")
self.reshape = op.op.get("reshape")
self.number_of_conv2d = 0
super().__init__()

def visit_call(self, call):
""" Visit the children. """
# First visit the children.
oshape = _get_shape(call)
odtype = call.checked_type.dtype
oshape = _get_tensor_shape(call)
odtype = _get_tensor_type(call)
input_types = [arg.checked_type for arg in call.args]
args = [self.visit(arg) for arg in call.args]

Expand All @@ -156,7 +213,7 @@ def visit_call(self, call):
if self.start_pack:
self.start_pack = False
data = args[0]
data_shape = _get_shape(call.args[0])
data_shape = _get_tensor_shape(call.args[0])
return _unpack_batch_channel(data, data_shape)
if self.start_pack:
# Operator cases
Expand All @@ -169,19 +226,25 @@ def visit_call(self, call):
data, weight = args
data_shape = _to_shape(input_types[0].shape)
kernel_shape = _to_shape(input_types[1].shape)
channels = call.attrs.channels
weight, kernel_shape, channels = _weight_shape_match(weight,
kernel_shape,
channels,
self.cfactor)
kernel = _pack_weight(weight, kernel_shape, self.cfactor)
# insert bit packing when necessary
if w_lanes != 1:
assert 8 % w_lanes == 0
kernel = op.bitpack(kernel, lanes=w_lanes)

conv2d = op.nn.conv2d(
data,
kernel,
strides=call.attrs.strides,
padding=call.attrs.padding,
dilation=call.attrs.dilation,
groups=call.attrs.groups,
channels=call.attrs.channels,
channels=channels,
kernel_size=call.attrs.kernel_size,
data_layout=data_layout,
kernel_layout=kernel_layout,
Expand All @@ -198,6 +261,11 @@ def visit_call(self, call):
data, weight = args
data_shape = _to_shape(input_types[0].shape)
kernel_shape = _to_shape(input_types[1].shape)
channels = call.attrs.channels
weight, kernel_shape, channels = _weight_shape_match_transpose(weight,
kernel_shape,
channels,
self.cfactor)
kernel = _pack_weight_conv2d_transpose(weight, kernel_shape, self.cfactor)
conv2d = op.nn.conv2d_transpose(
data,
Expand All @@ -218,8 +286,11 @@ def visit_call(self, call):
pass
elif call.op == self.add and len(input_types[1].shape) == 3:
data, const = args
const, input_shape = _const_shape_match(const,
input_types[1].shape,
self.cfactor)
const = _pack_const(const,
_to_shape(input_types[1].shape),
_to_shape(input_shape),
input_types[1].dtype,
self.bfactor,
self.cfactor)
Expand Down Expand Up @@ -247,6 +318,36 @@ def visit_call(self, call):
input_types[0].dtype == 'int32':
cast = relay.Call(op.op.get('cast'), [args[0]], call.attrs)
return relay.Call(op.op.get('copy'), [cast])
elif call.op == self.pad:
pad_width = call.attrs.pad_width
if len(pad_width) == 6:
pass
elif len(pad_width) == 4:
data, = args
new_pad_width = []
new_pad_width.extend(pad_width)
for _ in range(2):
new_pad_width.append([0, 0])
return op.nn.pad(data,
pad_value=call.attrs.pad_value,
pad_width=new_pad_width)
elif call.op == self.upsampling:
data, = args
scale_h = call.attrs.scale_h
scale_w = call.attrs.scale_w
data_layout = "NCHW%dn%dc" % (self.bfactor, self.cfactor)
method = call.attrs.method
align_corners = call.attrs.align_corners
return op.nn.upsampling(data,
scale_h,
scale_w,
data_layout,
method,
align_corners)
elif call.op == self.reshape and len(input_types[0].shape) == 4:
data, = args
data = op.transpose(data, axes=(0, 4, 1, 5, 2, 3))
return op.reshape(data, input_types[0].shape)

return relay.Call(
self.visit(call.op),
Expand Down
Loading