Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[TOPI][CUDA] Enable vectorization on fp16 type #4867

Merged
merged 1 commit into from
Feb 14, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 9 additions & 2 deletions topi/python/topi/cuda/injective.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,13 +40,20 @@ def schedule_injective_from_existing(sch, out):
num_thread = tvm.target.current_target(allow_none=False).max_num_threads
max_block = 256

# vectorize on fp16 data type. This allows to better utilize the memory
# bandwidth.
vector_width = 4 if out.dtype == "float16" else 1

try:
const_size = util.get_const_int(util.prod(out.shape))
max_block = 256
need_block_split = const_size > max_block * num_thread
need_block_split = const_size > max_block * num_thread * vector_width
except ValueError:
need_block_split = False

if vector_width > 1:
fused, v = sch[out].split(fused, vector_width)
sch[out].vectorize(v)

if need_block_split:
xo, xi = sch[out].split(fused, factor=num_thread * max_block)
bx, tx = sch[out].split(xi, factor=num_thread)
Expand Down
21 changes: 16 additions & 5 deletions topi/tests/python/test_topi_relu.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,11 +20,20 @@
import tvm
import topi
from topi.util import get_const_tuple

from tvm.contrib.nvcc import parse_compute_version
from common import get_all_backend

def verify_relu(m, n):
A = tvm.placeholder((m, n), name='A')
def skip_test(dtype, device):
if dtype == "float16" and device == "cuda":
major, minor = parse_compute_version(tvm.gpu(0).compute_version)
# fp16 starts from 5.3
if major < 6 or (major == 5 and minor < 3):
print("skip because gpu does not support fp16")
return True
return False

def verify_relu(m, n, dtype="float32"):
A = tvm.placeholder((m, n), name='A', dtype=dtype)
B = topi.nn.relu(A)

a_np = np.random.uniform(low=-1.0, high=1.0, size=get_const_tuple(A.shape)).astype(A.dtype)
Expand All @@ -35,6 +44,8 @@ def check_device(device):
if not ctx.exist:
print("Skip because %s is not enabled" % device)
return
if skip_test(dtype, device):
return
print("Running on target: %s" % device)
with tvm.target.create(device):
s = topi.generic.schedule_elemwise(B)
Expand Down Expand Up @@ -87,12 +98,12 @@ def _prelu_numpy(x, W):
tvm.testing.assert_allclose(b.asnumpy(), out_np, rtol=1e-5)

def test_relu():
verify_relu(10, 128)
verify_relu(10, 128, "float32")
verify_relu(128, 64, "float16")

def test_schedule_big_array():
verify_relu(1024 * 100 , 512)


def test_leaky_relu():
verify_leaky_relu(100, 0.1)

Expand Down
39 changes: 37 additions & 2 deletions topi/tests/python/test_topi_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,16 @@
import tvm
import topi
from tvm.contrib.pickle_memoize import memoize
from tvm.contrib.nvcc import parse_compute_version

def skip_test(dtype, device):
if dtype == "float16" and device == "cuda":
major, minor = parse_compute_version(tvm.gpu(0).compute_version)
# fp16 starts from 5.3
if major < 6 or (major == 5 and minor < 3):
print("skip because gpu does not support fp16")
return True
return False

def verify_elemwise_sum(num_args, dtype):
shape = (3,5,4)
Expand Down Expand Up @@ -84,18 +94,43 @@ def check_device(device):
for device in ["llvm"]:
check_device(device)

def verify_vectorization(n, m, dtype):
def check_device(device):
if not tvm.runtime.enabled(device):
print("Skip because %s is not enabled" % device)
return
if skip_test(dtype, device):
return
with tvm.target.create(device):
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ctx = tvm.context(device, 0)
A = tvm.placeholder((n, m), name='A', dtype=dtype)
B = tvm.compute((n, m), lambda i, j:
A[i, j] + tvm.const(1, A.dtype), name='B')
S = topi.generic.schedule_elemwise(B)

fun = tvm.build(S, [A, B], device)
np_A = tvm.nd.empty((n, m), A.dtype, ctx).copyfrom(
np.random.uniform(size=(n, m)))
np_B = tvm.nd.empty((n, m), B.dtype, ctx)
fun(np_A, np_B)
tvm.testing.assert_allclose(np_B.asnumpy(), np_A.asnumpy() + 1, rtol=1e-5)

for device in ["cuda"]:
check_device(device)

def test_vectorization():
verify_vectorization(128, 64, "float16")

def test_elemwise_sum():
verify_elemwise_sum(1, "float32")
verify_elemwise_sum(5, "float32")
verify_elemwise_sum(4, "int32")


def test_full():
verify_full((3,4,5), "float32", 3.14)
verify_full((10,), "int32", 7)


if __name__ == "__main__":
test_elemwise_sum()
test_full()
test_vectorization()