Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[TFLite] Using real image for QNN testing. #4816

Merged
merged 5 commits into from
Feb 11, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 18 additions & 3 deletions python/tvm/relay/frontend/tflite.py
Original file line number Diff line number Diff line change
Expand Up @@ -1185,10 +1185,14 @@ def convert_conv(self, op, conv_type):
pad_left, pad_right = get_pad_value(input_w, dilated_kernel_w, stride_w)
do_pad = not (pad_top == 0 and pad_bottom == 0 and pad_left == 0 and pad_right == 0)
if do_pad:
pad_value = 0
if input_tensor.qnn_params:
pad_value = get_scalar_from_constant(input_tensor.qnn_params['zero_point'])
in_expr = _op.nn.pad(data=in_expr, pad_width=((0, 0),
(pad_top, pad_bottom),
(pad_left, pad_right),
(0, 0)))
(0, 0)), pad_value=float(pad_value))
anijain2305 marked this conversation as resolved.
Show resolved Hide resolved

else:
raise tvm.error.OpAttributeUnImplemented(
'Padding format {} is not supported for operator Conv.'.format(padding))
Expand Down Expand Up @@ -1483,8 +1487,19 @@ def convert_pad(self, op):
# convert list of lists to tuple of tuples
paddings = tuple(tuple(l) for l in pad_list)

# Use default pad_value 0 because TFLite PAD does not support constant_values parameter
out = _op.nn.pad(in_expr, paddings)
# Set the pad value
pad_value = 0
if input_tensor.qnn_params:
# Check that input and output tensor have same qnn params.
output_tensors = self.get_output_tensors(op)
output_tensor = output_tensors[0]
assert self.has_same_qnn_params(input_tensor, output_tensor), \
"TFLite reshape requires input and output scale and zero points to be equal"

# The pad value for quantized pad is the input zero point.
pad_value = float(input_tensor.qnn_params['zero_point'].data.asnumpy())

out = _op.nn.pad(in_expr, pad_width=paddings, pad_value=pad_value)
return out

def convert_mirror_pad(self, op):
Expand Down
70 changes: 54 additions & 16 deletions tests/python/frontend/tflite/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,9 @@
import tvm.relay.testing.tf as tf_testing
from packaging import version as package_version

from PIL import Image
import os

#######################################################################
# Generic run functions for TVM & TFLite
# --------------------------------------
Expand All @@ -50,6 +53,20 @@ def convert_to_list(x):
x = [x]
return x


#######################################################################
# Get a real image for e2e testing.
# --------------------------------------
def get_real_image(im_height, im_width):
repo_base = 'https://github.com/dmlc/web-data/raw/master/tensorflow/models/InceptionV1/'
img_name = 'elephant-299.jpg'
image_url = os.path.join(repo_base, img_name)
img_path = download_testdata(image_url, img_name, module='data')
image = Image.open(img_path).resize((im_height, im_width))
x = np.array(image).astype('uint8')
data = np.reshape(x, (1, im_height, im_width, 3))
return data

def run_tvm_graph(tflite_model_buf, input_data, input_node, num_output=1, target='llvm',
out_names=None):
""" Generic function to compile on relay and execute on tvm """
Expand Down Expand Up @@ -1139,16 +1156,28 @@ def test_forward_squeeze():
# Pad
# ---

def _test_pad(data, mode="CONSTANT"):
def _test_pad(data, mode="CONSTANT", quantized=False):
""" One iteration of PAD """

assert len(data) == 2

# Test with tensor and constant
with tf.Graph().as_default():
in_data = [array_ops.placeholder(shape=data[0].shape, dtype=data[0].dtype, name='in')]
out = array_ops.pad(in_data[0], ops.convert_to_tensor(data[1], dtype=data[1].dtype), mode=mode)
compare_tflite_with_tvm([data[0]], ['in:0'], in_data, [out])
in_data = [array_ops.placeholder(shape=data[0].shape, dtype='float32', name='in')]

if quantized:
# fake_quant will keep the tensors in float32 until the conversion in the session
input_range = {'inq_0': (-100, 100)}
inq_data = [tf.quantization.fake_quant_with_min_max_args(in_data[0],
min=-100,
max=100,
name="inq_0")]
anijain2305 marked this conversation as resolved.
Show resolved Hide resolved
out = array_ops.pad(inq_data[0], ops.convert_to_tensor(data[1], dtype=data[1].dtype), mode=mode)
compare_tflite_with_tvm([data[0]], ['inq_0:0'], inq_data, [out], quantized=True,
input_range=input_range)
else:
out = array_ops.pad(in_data[0], ops.convert_to_tensor(data[1], dtype=data[1].dtype), mode=mode)
compare_tflite_with_tvm([data[0]], ['in:0'], in_data, [out])


def test_forward_pad():
Expand All @@ -1165,6 +1194,8 @@ def test_forward_pad():
np.array([[1, 1], [2, 2]], dtype=np.int32)], mode="REFLECT")
_test_pad([np.arange(1.0, 7.0, dtype=np.float32).reshape((2, 3)),
np.array([[1, 1], [2, 2]], dtype=np.int32)], mode="SYMMETRIC")
_test_pad([np.arange(0, 256, dtype=np.uint8).reshape((1, 256)),
np.array([[1, 1], [2, 2]], dtype=np.int32)], quantized=True)


#######################################################################
Expand Down Expand Up @@ -1425,10 +1456,12 @@ def test_forward_qnn_inception_v1_net():
"inception_v1_224_quant.tflite")
with open(tflite_model_file, "rb") as f:
tflite_model_buf = f.read()
# Checking the labels because the requantize implementation is different between TFLite and
# Relay. This cause final output numbers to mismatch. So, testing accuracy via labels.
np.random.seed(0)
data = np.random.random_integers(low=0, high=128, size=(1, 224, 224, 3)).astype('uint8')

# Test image. Checking the labels because the requantize implementation is different between
# TFLite and Relay. This cause final output numbers to mismatch. So, testing accuracy via
# labels. Also, giving a real image, instead of random inputs.
data = get_real_image(224, 224)

tflite_output = run_tflite_graph(tflite_model_buf, data)
tflite_predictions = np.squeeze(tflite_output)
tflite_sorted_labels = tflite_predictions.argsort()[-3:][::-1]
Expand All @@ -1445,10 +1478,12 @@ def test_forward_qnn_mobilenet_v1_net():
"mobilenet_v1_1.0_224_quant.tflite")
with open(tflite_model_file, "rb") as f:
tflite_model_buf = f.read()
# Checking the labels because the requantize implementation is different between TFLite and
# Relay. This cause final output numbers to mismatch. So, testing accuracy via labels.
np.random.seed(0)
data = np.random.random_integers(low=0, high=128, size=(1, 224, 224, 3)).astype('uint8')

# Test image. Checking the labels because the requantize implementation is different between
# TFLite and Relay. This cause final output numbers to mismatch. So, testing accuracy via
# labels. Also, giving a real image, instead of random inputs.
data = get_real_image(224, 224)

tflite_output = run_tflite_graph(tflite_model_buf, data)
tflite_predictions = np.squeeze(tflite_output)
tflite_sorted_labels = tflite_predictions.argsort()[-3:][::-1]
Expand All @@ -1465,10 +1500,12 @@ def test_forward_qnn_mobilenet_v2_net():
"mobilenet_v2_1.0_224_quant.tflite")
with open(tflite_model_file, "rb") as f:
tflite_model_buf = f.read()
# Checking the labels because the requantize implementation is different between TFLite and
# Relay. This cause final output numbers to mismatch. So, testing accuracy via labels.
np.random.seed(0)
data = np.random.random_integers(low=0, high=128, size=(1, 224, 224, 3)).astype('uint8')

# Test image. Checking the labels because the requantize implementation is different between
# TFLite and Relay. This cause final output numbers to mismatch. So, testing accuracy via
# labels. Also, giving a real image, instead of random inputs.
data = get_real_image(224, 224)

tflite_output = run_tflite_graph(tflite_model_buf, data)
tflite_predictions = np.squeeze(tflite_output)
tflite_sorted_labels = tflite_predictions.argsort()[-3:][::-1]
Expand All @@ -1489,6 +1526,7 @@ def test_forward_ssd_mobilenet_v1():
"ssd_mobilenet_v1_coco_2018_01_28_nopp.tflite")
with open(tflite_model_file, "rb") as f:
tflite_model_buf = f.read()
np.random.seed(0)
data = np.random.uniform(size=(1, 300, 300, 3)).astype('float32')
tflite_output = run_tflite_graph(tflite_model_buf, data)
tvm_output = run_tvm_graph(tflite_model_buf, data, 'normalized_input_image_tensor', num_output=2)
Expand Down