Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Frontend] Asymmetric padding of convolution support #4803

Merged
merged 1 commit into from
Apr 23, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 2 additions & 9 deletions python/tvm/relay/frontend/coreml.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,22 +77,15 @@ def _ConvolutionLayerParams(op, inexpr, etab):
pad_b = valid.paddingAmounts.borderAmounts[0].endEdgeSize
pad_r = valid.paddingAmounts.borderAmounts[1].endEdgeSize
if not all(v == 0 for v in (pad_t, pad_l, pad_b, pad_r)):
inexpr = _op.nn.pad(data=inexpr, pad_width=((0, 0),
(0, 0),
(pad_t, pad_b),
(pad_l, pad_r)))
params['padding'] = (pad_t, pad_l, pad_b, pad_r)
elif op.WhichOneof('ConvolutionPaddingType') == 'same':
assert op.same.asymmetryMode == 0, "Only support BOTTOM_RIGHT_HEAVY mode, " \
"which is used by tf/caffe and so on"
kernel = params['kernel_size']
strides = params['strides']
pad_t, pad_b = get_pad_value(H, kernel[0], strides[0])
pad_l, pad_r = get_pad_value(W, kernel[1], strides[1])
inexpr = _op.nn.pad(data=inexpr, pad_width=((0, 0),
(0, 0),
(pad_t, pad_b),
(pad_l, pad_r)))

params['padding'] = (pad_t, pad_l, pad_b, pad_r)
else:
raise NotImplementedError("Valid/Same convolution padding implemented")

Expand Down
20 changes: 2 additions & 18 deletions python/tvm/relay/frontend/keras.py
Original file line number Diff line number Diff line change
Expand Up @@ -290,15 +290,7 @@ def _convert_convolution(inexpr, keras_layer, etab):
in_w = keras_layer.input_shape[2]
pad_t, pad_b = _get_pad_pair(in_h, dilated_kernel_h, stride_h)
pad_l, pad_r = _get_pad_pair(in_w, dilated_kernel_w, stride_w)
if pad_t == pad_b and pad_l == pad_r:
params['padding'] = (pad_t, pad_l)
elif etab.data_layout == 'NCHW':
inexpr = _op.nn.pad(data=inexpr, pad_width=(
(0, 0), (0, 0), (pad_t, pad_b), (pad_l, pad_r)))
else:
inexpr = _op.nn.pad(data=inexpr, pad_width=(
(0, 0), (pad_t, pad_b), (pad_l, pad_r), (0, 0)))

params['padding'] = (pad_t, pad_l, pad_b, pad_r)
else:
msg = 'Padding with {} is not supported for operator Convolution ' \
'in frontend Keras.'
Expand Down Expand Up @@ -424,15 +416,7 @@ def _convert_separable_convolution(inexpr, keras_layer, etab):
in_w = keras_layer.input_shape[2]
pad_t, pad_b = _get_pad_pair(in_h, kernel_h, stride_h)
pad_l, pad_r = _get_pad_pair(in_w, kernel_w, stride_w)
if pad_t == pad_b and pad_l == pad_r:
params0['padding'] = (pad_t, pad_l)
elif etab.data_layout == 'NCHW':
inexpr = _op.nn.pad(data=inexpr, pad_width=(
(0, 0), (0, 0), (pad_t, pad_b), (pad_l, pad_r)))
else:
inexpr = _op.nn.pad(data=inexpr, pad_width=(
(0, 0), (pad_t, pad_b), (pad_l, pad_r), (0, 0)))

params0['padding'] = (pad_t, pad_l, pad_b, pad_r)
else:
msg = 'Padding with {} is not supported for operator Separable ' \
'Convolution in frontend Keras.'
Expand Down
8 changes: 1 addition & 7 deletions python/tvm/relay/frontend/tflite.py
Original file line number Diff line number Diff line change
Expand Up @@ -1308,13 +1308,7 @@ def convert_conv(self, op, conv_type):
pad_left, pad_right = get_pad_value(input_w, dilated_kernel_w, stride_w)
do_pad = not (pad_top == 0 and pad_bottom == 0 and pad_left == 0 and pad_right == 0)
if do_pad:
pad_value = 0
if input_tensor.qnn_params:
pad_value = get_scalar_from_constant(input_tensor.qnn_params['zero_point'])
in_expr = _op.nn.pad(data=in_expr, pad_width=((0, 0),
(pad_top, pad_bottom),
(pad_left, pad_right),
(0, 0)), pad_value=float(pad_value))
params['padding'] = [pad_top, pad_left, pad_bottom, pad_right]

else:
raise tvm.error.OpAttributeUnImplemented(
Expand Down