Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[REFACTOR][IR] Initialize Unified IR Pass Infra #4702

Merged
merged 1 commit into from
Jan 14, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
330 changes: 330 additions & 0 deletions include/tvm/ir/transform.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,330 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* \file tvm/ir/transform.h
*
* This file implements a pass manager. The pass manager manages a sequence
* of IRModule -> IRModule transformation passes over a particlar unit of AST. The
* design is largely inspired from LLVM's pass manager and modern deep learning
* frameworks that perform tensor->tensor transformations.
*
* The responsibilities of a traditional compiler pass manager usually involves:
* - Organizing the execution order of optimization passes though not
* necessarily in the optimal sequence.
* - Collecting required analysis information and keep them up-to-date.
* - Reducing the effort required to implement new passes for compiler
* developers, etc.
*
* Similar to LLVM's pass manager, we designed the Relay pass manager to work
* different granularity, i.e. module level, function level, and even sequential
* passe that contains a host of passes.
*
* However, we also extend the functionality of the traditional pass manager
* with the consideration of requirements/convention from deep learning
* frameworks, such as Pytorch and Gluon, etc. Each pass in the Relay pass
* manager performs the IRModule -> IRModule transformation. All
* different types of passes, including the sequential-level pass object, are
* essentially pass objects. This design, therefore, effectively provides users
* a consistent and convenient interface, i.e. Pass, to play with. It offers a
* means to ease the development and testing of Relay passes. For example, with
* the pass manager, external users will be able to have custom passes correctly
* scheduled without having to modify a single handcrafted pass order.
*
* In the future we need to describe constraints between passes. For example,
* we may want to preserve dependencies between different passes and validate
* them on the completion of a certain pass.
*
* We also need to store side information and import the error reporting system.
*/
#ifndef TVM_IR_TRANSFORM_H_
#define TVM_IR_TRANSFORM_H_

#include <tvm/base.h>
#include <tvm/node/container.h>
#include <tvm/ir/error.h>
#include <tvm/ir/module.h>
#include <string>

namespace tvm {
namespace transform {

/*!
* \brief PassContextNode contains the information that a pass can rely on,
* such as analysis results.
* \sa PassContext
*/
class PassContextNode : public Object {
public:
/*!
* \brief The error reporter used to notify users why an optimization fails.
*/
ErrorReporter err_reporter;

/*! \brief The default optimization level. */
int opt_level{2};

/*! \brief CPU is the default fallback device for heterogeneous execution. */
int fallback_device{static_cast<int>(kDLCPU)};

/*! \brief The list of required passes. */
tvm::Array<tvm::PrimExpr> required_pass;
/*! \brief The list of disabled passes. */
tvm::Array<tvm::PrimExpr> disabled_pass;

PassContextNode() = default;

void VisitAttrs(tvm::AttrVisitor* v) {
v->Visit("opt_level", &opt_level);
v->Visit("fallback_device", &fallback_device);
v->Visit("required_pass", &required_pass);
v->Visit("disabled_pass", &disabled_pass);
}

static constexpr const char* _type_key = "relay.PassContext";
TVM_DECLARE_FINAL_OBJECT_INFO(PassContextNode, Object);
};

/*!
* \brief PassContext that is used to configure the pass behavior.
*
* \code
*
* auto new_ctx = PassContext::Create();
* ctx->opt_level = 2;
* ctx->fallback_device = kDLCPU;
* With<PassContext> scope(ctx);
* // pass context in effect.
*
* \endcode
* \sa PassContextNode
*/
class PassContext : public ObjectRef {
public:
PassContext() {}
explicit PassContext(ObjectPtr<::tvm::Object> n) : ObjectRef(n) {}
/*!
* \brief const accessor.
* \return const access pointer.
*/
const PassContextNode* operator->() const {
CHECK(get() != nullptr);
return static_cast<const PassContextNode*>(get());
}
/*!
* \brief mutable accessor.
* \return mutable access pointer.
*/
PassContextNode* operator->() {
CHECK(get() != nullptr);
return static_cast<PassContextNode*>(get_mutable());
}
/*!
* \brief Construct a PassContext containing the default configurations.
* \return The new PassContext.
*/
TVM_DLL static PassContext Create();
/*!
* \brief Get the default pass context in the current scope.
* \return The pass context.
*/
TVM_DLL static PassContext Current();

// accessor.
using ContainerType = PassContextNode;
class Internal;

private:
// The entry of a pass context scope.
TVM_DLL void EnterWithScope();
// The exit of a pass context scope.
TVM_DLL void ExitWithScope();

// Classes to get the Python `with` like syntax.
friend class Internal;
friend class tvm::With<PassContext>;
};

/*!
* \brief Meta data that will be used to help optimization and analysis.
* \sa PassInfo
*/
class PassInfoNode : public Object {
public:
/*! \brief The minimal optimization level that this pass will be enabled. */
int opt_level;

/*! \brief The name of an optimization/analysis pass. */
std::string name;

/*! \brief The passes that are required to perform the current pass. */
tvm::Array<tvm::PrimExpr> required;

PassInfoNode() = default;

void VisitAttrs(tvm::AttrVisitor* v) {
v->Visit("opt_level", &opt_level);
v->Visit("name", &name);
v->Visit("required", &required);
}

static constexpr const char* _type_key = "relay.PassInfo";
TVM_DECLARE_FINAL_OBJECT_INFO(PassInfoNode, Object);
};

/*
* \brief Managed reference class for PassInfoNode
* \sa PassInfoNode
*/
class PassInfo : public ObjectRef {
public:
/*!
* \brief Constructor
* \param opt_level The optimization level
* \param name Name of the pass.
* \param required The passes that are required to perform the current pass.
*/
TVM_DLL PassInfo(int opt_level,
std::string name,
tvm::Array<tvm::PrimExpr> required);

TVM_DEFINE_OBJECT_REF_METHODS(PassInfo, ObjectRef, PassInfoNode);
};

/*!
* \brief PassNode is the base type of differnt types of optimization passes.
* It is designed as a pure class and implemented by different pass subclasses
* at different granularity of Relay nodes.
*/
class PassNode : public Object {
public:
virtual ~PassNode() {}
/*!
* \brief Get the pass information/meta data. */
virtual PassInfo Info() const = 0;

/*!
* \brief Transform mod using the default PassContext in the current scope.
*
* \param mod The module that an optimization pass runs on.
*
* \return The transformed module.
*/
IRModule operator()(const IRModule& mod) const {
return this->operator()(mod, PassContext::Current());
}

/*!
* \brief Transform mod using a functor under a given pass context.
*
* \param mod The module that an optimization pass runs on.
* \param pass_ctx The pass context that can provide information for the optimization.
*
* \return The transformed module.
*/
virtual IRModule operator()(const IRModule& mod,
const PassContext& pass_ctx) const = 0;

void VisitAttrs(tvm::AttrVisitor* v) {}

static constexpr const char* _type_key = "relay.Pass";
TVM_DECLARE_BASE_OBJECT_INFO(PassNode, Object);
};

class Pass : public ObjectRef {
public:
/*!
* \brief Transform mod using the default PassContext in the current scope.
*
* \param mod The module that an optimization pass runs on.
*
* \return The transformed module.
*/
IRModule operator()(const IRModule& mod) const {
const PassNode* node = operator->();
CHECK(node != nullptr);
return node->operator()(mod);
}
/*!
* \brief Transform mod using a functor under a given pass context.
*
* \param mod The module that an optimization pass runs on.
* \param pass_ctx The pass context that can provide information for the optimization.
*
* \return The transformed module.
*/
IRModule operator()(const IRModule& mod,
const PassContext& pass_ctx) const {
const PassNode* node = operator->();
CHECK(node != nullptr);
return node->operator()(mod, pass_ctx);
}

TVM_DEFINE_OBJECT_REF_METHODS(Pass, ObjectRef, PassNode);
};

class SequentialNode;

class Sequential : public Pass {
public:
/*!
* \brief The constructor of `Sequential`.
*
* \param passes The passes to apply.
* \param pass_info The pass metadata.
*/
TVM_DLL Sequential(tvm::Array<Pass> passes, PassInfo pass_info);

/*!
* \brief The constructor of `Sequential`.
*
* \param passes The passes to apply.
* \param name The name of a sequential pass. It's defaulted to "sequential".
* This allows users to only provide a list of passes and execute them
* under a given context.
*/
TVM_DLL Sequential(tvm::Array<Pass> passes, std::string name = "sequential");

Sequential() = default;
explicit Sequential(tvm::ObjectPtr<::tvm::Object> n) : Pass(n) {}

const SequentialNode* operator->() const;
using ContainerType = Sequential;
};

/*
* \brief Create a module pass.
*
* \param pass_func The packed function that contains the optimization.
* \param opt_level The optimization level of the module pass.
* \param name The name of the module pass.
* \param required The list of the passes that the module pass is dependent on.
*
* \return The created module pass.
*/
Pass CreateModulePass(
const runtime::TypedPackedFunc<IRModule(IRModule, PassContext)>& pass_func,
int opt_level,
const std::string& name,
const tvm::Array<tvm::PrimExpr>& required);

} // namespace transform
} // namespace tvm

#endif // TVM_IR_TRANSFORM_H_
Loading