Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relay][Frontend][TFlite] Add support for quantized LOGISTIC #4696

Merged
merged 2 commits into from
Feb 7, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 26 additions & 0 deletions python/tvm/relay/frontend/tflite.py
Original file line number Diff line number Diff line change
Expand Up @@ -274,6 +274,23 @@ def is_quantized(self, op):
first_tensor = input_tensors[0]
return first_tensor.qnn_params is not None

def quantize(self, expr, tensor_to_quantize):
""" Helper function to quantize a tensor with Relay """
tensor_type = tensor_to_quantize.tensor.Type()
tensor_type_str = self.get_tensor_type_str(tensor_type)
quantized = _qnn.op.quantize(data=expr,
output_scale=tensor_to_quantize.qnn_params['scale'],
output_zero_point=tensor_to_quantize.qnn_params['zero_point'],
out_dtype=tensor_type_str)
return quantized

def dequantize(self, expr, tensor):
""" Helper function to dequantize a tensor with Relay """
dequantized = _qnn.op.dequantize(data=expr,
input_scale=tensor.qnn_params['scale'],
input_zero_point=tensor.qnn_params['zero_point'])
return dequantized

def convert_conv2d(self, op):
"""Convert TFLite conv2d"""
return self.convert_conv(op, "conv2d")
Expand Down Expand Up @@ -391,7 +408,16 @@ def convert_logistic(self, op):
input_tensor = input_tensors[0]
in_expr = self.get_expr(input_tensor.tensor_idx)

output_tensors = self.get_output_tensors(op)
assert len(output_tensors) == 1, "output tensors length should be 1"
output_tensor = output_tensors[0]

if input_tensor.qnn_params:
in_expr = self.dequantize(in_expr, input_tensor)
out = _op.sigmoid(in_expr)
inadob marked this conversation as resolved.
Show resolved Hide resolved
if output_tensor.qnn_params:
out = self.quantize(out, output_tensor)

return out

def convert_softmax(self, op):
Expand Down
18 changes: 13 additions & 5 deletions tests/python/frontend/tflite/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -1223,17 +1223,25 @@ def test_forward_unpack():
# Logistic
# --------

def _test_logistic(data):
def _test_logistic(data, quantized=False):
""" One iteration of LOGISTIC """
with tf.Graph().as_default():
in_data = array_ops.placeholder(shape=data.shape, dtype=data.dtype)
out = math_ops.sigmoid(in_data)
compare_tflite_with_tvm(data, 'Placeholder:0', [in_data], [out])
in_data = array_ops.placeholder(shape=data.shape, dtype='float32', name='in_0')

if quantized:
inq_data = tf.quantization.fake_quant_with_min_max_args(in_data, min=-5, max=5, name="inq_0")
input_range = {'inq_0': (-5, 5)}
out = math_ops.sigmoid(inq_data)
out = tf.quantization.fake_quant_with_min_max_args(out, min=0, max=1, name="out")
compare_tflite_with_tvm(data, 'inq_0:0', [inq_data], [out], quantized=True, input_range=input_range)
else:
out = math_ops.sigmoid(in_data)
compare_tflite_with_tvm(data, 'in_0:0', [in_data], [out])

def test_forward_logistic():
""" LOGISTIC """
_test_logistic(np.arange(6.0, dtype=np.float32).reshape((1, 6)))

_test_logistic(np.random.uniform(0, 255, (3, 6)).astype(np.uint8), quantized=True)

#######################################################################
# Softmax
Expand Down