Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add __float2half_rn for cuda compute capabilities less than 53 #4489

Merged
merged 2 commits into from
Dec 10, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions src/codegen/literal/cuda_half_t.h
Original file line number Diff line number Diff line change
Expand Up @@ -176,8 +176,10 @@ class TVM_ALIGNED(2) half {
uint32_t vshift = 1 - exp16;
uint32_t significand = fp32HiddenBit | (v.ui & fp32FractionMask);
v.ui = significand >> vshift;
v.ui += (v.ui & 0x3fff) != 0x1000 || (significand & 0x7ff) ? 0x1000 : 0;
} else if (v.si <= maxN) {
// Handle norms
v.ui += (v.ui & 0x3fff) != 0x1000 ? 0x1000 : 0;
v.ui -= expAdjust << fp32FractionBits;
} else if (v.si <= infN) {
v.si = infN;
Expand Down Expand Up @@ -211,8 +213,10 @@ class TVM_ALIGNED(2) half {
uint32_t vshift = 1 - exp16;
uint32_t significand = fp32HiddenBit | (v.ui & fp32FractionMask);
v.ui = significand >> vshift;
v.ui += (v.ui & 0x3fff) != 0x1000 || (significand & 0x7ff) ? 0x1000 : 0;
} else if (v.si <= maxN) {
// Handle norms
v.ui += (v.ui & 0x3fff) != 0x1000 ? 0x1000 : 0;
v.ui -= expAdjust << fp32FractionBits;
} else if (v.si <= infN) {
v.si = infN;
Expand Down Expand Up @@ -275,6 +279,10 @@ TVM_HALF_OPERATOR(bool, >)
TVM_HALF_OPERATOR(bool, <)
TVM_HALF_OPERATOR(bool, >=)
TVM_HALF_OPERATOR(bool, <=)

TVM_XINLINE half __float2half_rn(const float a) {
return half(a);
}
)";

#endif // TVM_CODEGEN_LITERAL_CUDA_HALF_T_H_
28 changes: 28 additions & 0 deletions tests/python/unittest/test_codegen_cuda.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
# under the License.
import tvm
import numpy as np
import unittest
from tvm.contrib.nvcc import have_fp16, have_int8
from tvm.contrib import nvcc

Expand Down Expand Up @@ -263,6 +264,32 @@ def test_rfactor_predicates():
fcuda = tvm.build(s, [A, B], "cuda")


@unittest.skipIf(not tvm.gpu(0).exist or not tvm.module.enabled("cuda"), "skip because cuda is not enabled..")
def test_cuda_const_float_to_half():
# This import is required to use nvcc to perform code gen;
# otherwise it is found that the code gen is done by nvrtc.
from tvm import autotvm
shape = (2, 3, 4)
a = tvm.placeholder(shape, dtype='float16', name='a')
b = tvm.const(0.5, dtype='float16')
c = tvm.compute(shape, lambda i, j, k: a[i, j, k] > b, name='c')
s = tvm.create_schedule(c.op)
axes = [axis for axis in c.op.axis]
fused = s[c].fuse(*axes)
bx, tx = s[c].split(fused, factor=64)
s[c].bind(bx, tvm.thread_axis('blockIdx.x'))
s[c].bind(tx, tvm.thread_axis('threadIdx.x'))

func = tvm.build(s, [a, c], 'cuda')
ctx = tvm.gpu(0)
a_np = np.random.uniform(size=shape).astype(a.dtype)
c_np = np.zeros(shape=shape, dtype=c.dtype)
a = tvm.nd.array(a_np, ctx)
c = tvm.nd.array(c_np, ctx)
func(a, c)
np.testing.assert_equal(c.asnumpy(), a_np > b.value)


if __name__ == "__main__":
test_cuda_vectorize_add()
test_cuda_multiply_add()
Expand All @@ -272,3 +299,4 @@ def test_rfactor_predicates():
test_cuda_shuffle()
test_cuda_reducition_binding()
test_rfactor_predicates()
test_cuda_const_float_to_half()