Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[TOPI] implement pool3d op #4478

Merged
merged 3 commits into from
Dec 12, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
62 changes: 62 additions & 0 deletions include/tvm/relay/attrs/nn.h
Original file line number Diff line number Diff line change
Expand Up @@ -406,6 +406,68 @@ struct AdaptivePool2DAttrs : public tvm::AttrsNode<AdaptivePool2DAttrs> {
};


/*! \brief Attributes for 3D max pool operator */
struct MaxPool3DAttrs : public tvm::AttrsNode<MaxPool3DAttrs> {
Array<IndexExpr> pool_size;
Array<IndexExpr> strides;
Array<IndexExpr> padding;
std::string layout;
bool ceil_mode;

TVM_DECLARE_ATTRS(MaxPool3DAttrs, "relay.attrs.MaxPool3DAttrs") {
TVM_ATTR_FIELD(pool_size)
.describe("Size of the pooling windows.");
TVM_ATTR_FIELD(strides).set_default(Array<IndexExpr>({1, 1, 1}))
.describe("Specifies the strides of the convolution.");
TVM_ATTR_FIELD(padding).set_default(Array<IndexExpr>({0, 0, 0}))
.describe("If padding is non-zero, then the input is implicitly zero-padded"
"Padding support both symmetric and asymmetric as"
"one int : same padding used on all sides"
"three int : back, bottom, right will use same padding as front, top, left"
"six int : padding width in the order of (front, top, left, back, bottom, right)");
TVM_ATTR_FIELD(layout).set_default("NCDHW")
.describe("Dimension ordering of data and weight. Can be 'NCDHW', 'NDHWC', etc."
"'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
"dimensions respectively. Pooling is applied on the 'D', 'H' and"
"'W' dimensions.");
TVM_ATTR_FIELD(ceil_mode).set_default(false)
.describe("When true, will use ceil instead of floor to compute the output shape.");
}
};

/*! \brief Attributes for 3D avg pool operator */
struct AvgPool3DAttrs : public tvm::AttrsNode<AvgPool3DAttrs> {
Array<IndexExpr> pool_size;
Array<IndexExpr> strides;
Array<IndexExpr> padding;
std::string layout;
bool ceil_mode;
bool count_include_pad;

TVM_DECLARE_ATTRS(AvgPool3DAttrs, "relay.attrs.AvgPool3DAttrs") {
TVM_ATTR_FIELD(pool_size)
.describe("Size of the pooling windows.");
TVM_ATTR_FIELD(strides).set_default(Array<IndexExpr>({1, 1, 1}))
.describe("Specifies the strides of the convolution.");
TVM_ATTR_FIELD(padding).set_default(Array<IndexExpr>({0, 0, 0}))
.describe("If padding is non-zero, then the input is implicitly zero-padded"
"Padding support both symmetric and asymmetric as"
"one int : same padding used on all sides"
"three int : back, bottom, right will use same padding as front, top, left"
"six int : padding width in the order of (front, top, left, back, bottom, right)");
TVM_ATTR_FIELD(layout).set_default("NCDHW")
.describe("Dimension ordering of data and weight. Can be 'NCDHW', 'NDHWC', etc."
"'N', 'C', 'D', 'H', 'W' stands for batch, channel, depth, height, and width"
"dimensions respectively. Pooling is applied on the 'D', 'H' and"
"'W' dimensions.");
TVM_ATTR_FIELD(ceil_mode).set_default(false)
.describe("When true, will use ceil instead of floor to compute the output shape.");
TVM_ATTR_FIELD(count_include_pad).set_default(false)
.describe("When true, will include padding to compute the average");
}
};


/*! \brief Attributes for dense operator */
struct DenseAttrs : public tvm::AttrsNode<DenseAttrs> {
IndexExpr units;
Expand Down
Loading