Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relay] shape func for zeros, zeros_like, ones, ones_like #4448

Merged
merged 1 commit into from
Dec 2, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 18 additions & 0 deletions python/tvm/relay/op/_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -121,6 +121,20 @@ def cast_shape_func(attrs, inputs, out_ndims):
return [_cast_shape_function(*inputs)]

# shape func
@script
def _full_shape_func(x):
out_ndim = len(x)
out = output_tensor((out_ndim,), "int64")
for i in const_range(out_ndim):
out[i] = x[i]
return out

def full_shape_func(attrs, inputs, out_ndims):
"""
Shape func for zeros, zeros_like, ones, ones_like.
"""
return [_full_shape_func(*inputs)]

@script
def _broadcast_shape_func(x, y, ndim):
out = output_tensor((ndim,), "int64")
Expand Down Expand Up @@ -162,6 +176,10 @@ def elemwise_shape_func(attrs, inputs, _):
return [topi.math.identity(inputs[0])]

register_shape_func("cast", False, cast_shape_func)
register_shape_func("zeros", False, full_shape_func)
register_shape_func("zeros_like", False, full_shape_func)
register_shape_func("ones", False, full_shape_func)
register_shape_func("ones_like", False, full_shape_func)

register_shape_func("add", False, broadcast_shape_func)
register_shape_func("subtract", False, broadcast_shape_func)
Expand Down
38 changes: 33 additions & 5 deletions tests/python/relay/test_any.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,10 +41,11 @@ def verify_any_broadcast(x_shape, y_shape, x_np_shape, y_np_shape, op, np_op):
mod["main"] = relay.Function([x, y], op(x, y))
x_np = np.random.uniform(size=x_np_shape).astype(dtype)
y_np = np.random.uniform(size=y_np_shape).astype(dtype)
res_np = np_op(x_np, y_np)
for kind in ["debug", "vm"]:
ex = relay.create_executor(kind, mod=mod, ctx=tvm.cpu(), target="llvm")
result = ex.evaluate()(x_np, y_np)
tvm.testing.assert_allclose(result.asnumpy(), np_op(x_np, y_np))
tvm.testing.assert_allclose(result.asnumpy(), res_np)

def test_any_broadcast():
# Test broadcast with 1s
Expand Down Expand Up @@ -77,6 +78,32 @@ def check_fail(x_shape, y_shape, x_np_shape, y_np_shape, op, np_op):
check_fail((relay.Any(),), (3, 2), (2), (4, 2), relay.add, np.add)


def verify_any_full(x_shape, x_np_shape, relay_op, np_op, dtype='float32'):
x = relay.var('x', shape=x_shape, dtype=dtype)
mod = relay.module.Module()
mod['main'] = relay.Function([x], relay.zeros_like(x))
x_np = np.random.uniform(size=x_np_shape).astype(dtype)
res_np = np.zeros_like(x_np)
for kind in ['debug', 'vm']:
ex = relay.create_executor(kind, mod=mod, ctx=tvm.cpu(), target='llvm')
result = ex.evaluate()(x_np).asnumpy()
tvm.testing.assert_allclose(result, res_np)

def test_any_full():
# zeros, zeros_like, ones, ones_like
verify_any_full(any_dims(3), (2, 3, 5), relay.zeros, np.zeros, "float32")
verify_any_full(any_dims(3), (225, 115, 15), relay.zeros, np.zeros, "float32")
verify_any_full(any_dims(5), (10, 11, 12, 13, 14), relay.zeros, np.zeros, "int32")
verify_any_full(any_dims(3), (2, 3, 5), relay.zeros_like, np.zeros_like, "float32")
verify_any_full(any_dims(3), (225, 115, 15), relay.zeros_like, np.zeros_like, "float32")
verify_any_full(any_dims(5), (10, 11, 12, 13, 14), relay.zeros_like, np.zeros_like, "int32")
verify_any_full(any_dims(3), (2, 3, 5), relay.ones, np.ones, "float32")
verify_any_full(any_dims(3), (225, 115, 15), relay.ones, np.ones, "float32")
verify_any_full(any_dims(5), (10, 11, 12, 13, 14), relay.ones, np.ones, "int32")
verify_any_full(any_dims(3), (2, 3, 5), relay.ones_like, np.ones_like, "float32")
verify_any_full(any_dims(3), (225, 115, 15), relay.ones_like, np.ones_like, "float32")
verify_any_full(any_dims(5), (10, 11, 12, 13, 14), relay.ones_like, np.ones_like, "int32")

def test_any_concat():
x = relay.var('x', shape=(relay.Any(), 2), dtype="float32")
y = relay.var('y', shape=(1, 2), dtype="float32")
Expand All @@ -85,10 +112,10 @@ def test_any_concat():
mod["main"] = relay.Function([x, y], z)
x_np = np.random.uniform(size=(3, 2)).astype('float32')
y_np = np.random.uniform(size=(1, 2)).astype('float32')
ref = np.concatenate([x_np, y_np], axis=0)
for kind in ["debug", "vm"]:
ex = relay.create_executor(kind, mod=mod, ctx=tvm.cpu(), target="llvm")
result = ex.evaluate()(x_np, y_np)
ref = np.concatenate([x_np, y_np], axis=0)
tvm.testing.assert_allclose(result.asnumpy(), ref)

def verify_any_reshape(x_shape, newshape, x_np_shape, out_shape):
Expand Down Expand Up @@ -116,10 +143,10 @@ def verify_any_argwhere(x_shape, x_np_shape, dtype="bool"):
mod = relay.module.Module()
mod["main"] = relay.Function([x], y)
data = np.random.choice([0, 1, 2, 3], size=x_np_shape).astype(dtype)
expected = np.argwhere(data)
for kind in ["debug", "vm"]:
ex = relay.create_executor(kind, mod=mod, ctx=tvm.cpu(), target="llvm")
result = ex.evaluate()(data).asnumpy()
expected = np.argwhere(data)
assert result.shape == expected.shape
tvm.testing.assert_allclose(result.flatten(), expected.flatten())

Expand Down Expand Up @@ -412,10 +439,10 @@ def verify_any_pad(data_shape, pad_width, static_data_shape):
y = relay.nn.pad(data, pad_width)
mod["main"] = relay.Function([data], y)
data_np = np.random.uniform(size=static_data_shape).astype(dtype)
ref_out = np.pad(data_np, pad_width)
for kind in ["debug", "vm"]:
ex = relay.create_executor(kind, mod=mod, ctx=tvm.cpu(), target="llvm")
result = ex.evaluate()(data_np)
ref_out = np.pad(data_np, pad_width)
tvm.testing.assert_allclose(result.asnumpy(), ref_out)

def test_any_pad():
Expand Down Expand Up @@ -497,12 +524,12 @@ def _body(i, st):
mod = relay.module.Module()
mod["main"] = func
data = np.array(0.0, dtype='int32')
ref = np.array([0] + list(range(10))).reshape((11, 1)).astype("int32")
# TODO(@jroesch): After LambdaLift pass, TypeInfer pass will fail
# so currently we cannot run this test case on VM
for kind in ["debug"]:
ex = relay.create_executor(kind, mod=mod, ctx=tvm.cpu(), target="llvm")
result = ex.evaluate()(data)
ref = np.array([0] + list(range(10))).reshape((11, 1)).astype("int32")
np.testing.assert_allclose(result.asnumpy(), ref)

def test_recursive_concat_with_wrong_annotation():
Expand Down Expand Up @@ -553,6 +580,7 @@ def _body(i, st):
assert "in particular dimension 0 conflicts 2 does not match 1" in str(e)

if __name__ == "__main__":
test_any_full()
test_any_broadcast()
test_any_broadcast_fail()
test_any_concat()
Expand Down