Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[VTA] Bringing group convolution support #4421

Merged
merged 6 commits into from
Dec 9, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions vta/python/vta/top/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
from . import op
from . import vta_conv2d
from . import vta_conv2d_transpose
from . import vta_group_conv2d
from . import vta_dense
from . import util

Expand Down
199 changes: 199 additions & 0 deletions vta/python/vta/top/vta_group_conv2d.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,199 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Group conv2D operator declaration and schedule registration for VTA."""

import numpy as np

import tvm
from tvm import autotvm
import topi

from ..environment import get_env

@autotvm.register_topi_compute(topi.nn.group_conv2d_nchw, 'vta', 'direct')
def packed_group_conv2d(cfg,
data,
kernel,
strides,
padding,
dilation,
group,
out_dtype):
""" Packed group conv2d nchw function."""
assert dilation == (1, 1)

if padding[0]:
pad_data = topi.nn.pad(data, [0, 0, padding[0], padding[1], 0, 0], name="pad_data")
else:
pad_data = data
assert len(data.shape) == 6
assert len(kernel.shape) == 6
assert data.dtype == "int8", data.dtype
assert kernel.dtype == "int8", kernel.dtype
assert out_dtype == "int32", out_dtype

oheight = topi.util.get_const_int((pad_data.shape[2] - kernel.shape[2]) // strides[0] + 1)
owidth = topi.util.get_const_int((pad_data.shape[3] - kernel.shape[3]) // strides[1] + 1)
oshape = (data.shape[0], kernel.shape[0], oheight, owidth, data.shape[4], kernel.shape[4])

ishape = topi.util.get_const_tuple(data.shape)
kshape = topi.util.get_const_tuple(kernel.shape)
assert group * kshape[1] == ishape[1]
assert kshape[0] % group == 0
d_i = tvm.reduce_axis((0, kshape[2]), name='d_i')
d_j = tvm.reduce_axis((0, kshape[3]), name='d_j')
k_o = tvm.reduce_axis((0, kshape[1]), name='k_o')
k_i = tvm.reduce_axis((0, kshape[-1]), name='k_i')
hstride, wstride = strides
out = tvm.compute(
oshape,
lambda b_o, c_o, i, j, b_i, c_i: tvm.sum(
pad_data[b_o, c_o // (kshape[0] // group) * kshape[1] + k_o, i * hstride + d_i,
j * wstride + d_j, b_i, k_i].astype(out_dtype) *
kernel[c_o, k_o, d_i, d_j, c_i, k_i].astype(out_dtype),
axis=[k_o, d_i, d_j, k_i]),
name="res", tag="packed_group_conv2d")

cfg.add_flop(2 * np.prod(topi.util.get_const_tuple(oshape)) *
kshape[2] * kshape[3] * ishape[1] * kshape[-1])

return out


@autotvm.register_topi_schedule(topi.generic.schedule_group_conv2d_nchw, 'vta', 'direct')
def schedule_packed_group_conv2d(cfg, outs):
""" Schedule the packed conv2d.
"""
assert len(outs) == 1
output = outs[0]
const_ops = []
ewise_inputs = []
ewise_ops = []
conv2d_res = []
assert output.dtype == "int8"
assert output.op.input_tensors[0].dtype == "int32"

def _traverse(op):
if topi.tag.is_broadcast(op.tag):
if not op.same_as(output.op):
if not op.axis:
const_ops.append(op)
else:
ewise_ops.append(op)
for tensor in op.input_tensors:
if isinstance(tensor.op, tvm.tensor.PlaceholderOp):
ewise_inputs.append((op, tensor))
else:
_traverse(tensor.op)
else:
assert op.tag == "packed_group_conv2d"
conv2d_res.append(op)

_traverse(output.op)
assert len(conv2d_res) == 1
conv2d_stage = conv2d_res[0].output(0)
s = tvm.create_schedule(output.op)

##### space definition begin #####
b, c_o, x_i, x_j, _, _ = s[conv2d_stage].op.axis
c_i, _, _, _ = s[conv2d_stage].op.reduce_axis
cfg.define_split('tile_b', b, num_outputs=2)
cfg.define_split('tile_h', x_i, num_outputs=2)
cfg.define_split('tile_w', x_j, num_outputs=2)
cfg.define_split('tile_ci', c_i, num_outputs=2)
cfg.define_split('tile_co', c_o, num_outputs=2)
cfg.define_knob('oc_nthread', [1, 2])
cfg.define_knob('h_nthread', [1, 2])
###### space definition end ######

data, kernel = conv2d_stage.op.input_tensors
if isinstance(data.op, tvm.tensor.ComputeOp) and "pad" in data.op.tag:
temp = data.op.input_tensors[0]
pad_data = data
data = temp
else:
pad_data = None

env = get_env()

# setup pad
if pad_data is not None:
cdata = pad_data
s[pad_data].set_scope(env.inp_scope)
else:
cdata = s.cache_read(data, env.inp_scope, [conv2d_stage])
ckernel = s.cache_read(kernel, env.wgt_scope, [conv2d_stage])
s[conv2d_stage].set_scope(env.acc_scope)

# cache read input
cache_read_ewise = []
for consumer, tensor in ewise_inputs:
cache_read_ewise.append(
s.cache_read(tensor, env.acc_scope, [consumer]))

# set ewise scope
for op in ewise_ops:
s[op].set_scope(env.acc_scope)
s[op].pragma(s[op].op.axis[0], env.alu)

for op in const_ops:
s[op].compute_inline()

# tile
x_bo, x_co, x_i, x_j, x_bi, x_ci = s[output].op.axis
x_co0, x_co1 = cfg['tile_co'].apply(s, output, x_co)
x_i0, x_i1 = cfg['tile_h'].apply(s, output, x_i)
x_j0, x_j1 = cfg['tile_w'].apply(s, output, x_j)
s[output].reorder(x_bo, x_i0, x_co0, x_j0, x_co1, x_i1, x_j1, x_bi, x_ci)
store_pt = x_j0

# set all compute scopes
s[conv2d_stage].compute_at(s[output], store_pt)
for op in ewise_ops:
s[op].compute_at(s[output], store_pt)

for tensor in cache_read_ewise:
s[tensor].compute_at(s[output], store_pt)
s[tensor].pragma(s[tensor].op.axis[0], env.dma_copy)

# virtual threading along output channel axes
if cfg['oc_nthread'].val > 1:
_, v_t = s[output].split(x_co0, factor=cfg['oc_nthread'].val)
s[output].reorder(v_t, x_bo)
s[output].bind(v_t, tvm.thread_axis("cthread"))

# virtual threading along spatial rows
if cfg['h_nthread'].val > 1:
_, v_t = s[output].split(x_i0, factor=cfg['h_nthread'].val)
s[output].reorder(v_t, x_bo)
s[output].bind(v_t, tvm.thread_axis("cthread"))

x_bo, x_co, x_i, x_j, x_bi, x_ci = s[conv2d_stage].op.axis
k_o, d_i, d_j, k_i = s[conv2d_stage].op.reduce_axis
s[conv2d_stage].reorder(x_bo, k_o, x_j, d_j, d_i, x_co, x_i, x_bi, x_ci, k_i)

k_o, _ = cfg['tile_ci'].apply(s, conv2d_stage, k_o)
s[cdata].compute_at(s[conv2d_stage], k_o)
s[ckernel].compute_at(s[conv2d_stage], k_o)

# Use VTA instructions
s[cdata].pragma(s[cdata].op.axis[0], env.dma_copy)
s[ckernel].pragma(s[ckernel].op.axis[0], env.dma_copy)
s[conv2d_stage].tensorize(x_bi, env.gemm)
s[output].pragma(x_co1, env.dma_copy)

return s
155 changes: 155 additions & 0 deletions vta/scripts/tune_group_conv2d.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

"""Tuning a single group conv2d operator"""

from collections import namedtuple
import logging
import os

import tvm
from tvm import autotvm
from tvm.contrib.util import get_lower_ir
import topi
import vta
import vta.testing

env = vta.get_env()

Workload = namedtuple("GroupConv2DWorkload",
['batch', 'height', 'width', 'in_filter', 'out_filter', 'groups',
'hkernel', 'wkernel', 'hpad', 'wpad', 'hstride', 'wstride'])

# Mobilenet (grouped variant) workloads
mobilenet_wkls = [
('mobilenet.D1', Workload(env.BATCH, 112, 112, 32, 32, 2, 3, 3, 1, 1, 1, 1)),
('mobilenet.D2', Workload(env.BATCH, 112, 112, 64, 64, 4, 3, 3, 1, 1, 2, 2)),
('mobilenet.D3', Workload(env.BATCH, 56, 56, 128, 128, 8, 3, 3, 1, 1, 1, 1)),
('mobilenet.D4', Workload(env.BATCH, 56, 56, 128, 128, 8, 3, 3, 1, 1, 2, 2)),
('mobilenet.D5', Workload(env.BATCH, 28, 28, 256, 256, 16, 3, 3, 1, 1, 1, 1)),
('mobilenet.D6', Workload(env.BATCH, 28, 28, 256, 256, 16, 3, 3, 1, 1, 2, 2)),
('mobilenet.D7', Workload(env.BATCH, 14, 14, 512, 512, 32, 3, 3, 1, 1, 1, 1)),
('mobilenet.D8', Workload(env.BATCH, 14, 14, 512, 512, 32, 3, 3, 1, 1, 2, 2)),
('mobilenet.D9', Workload(env.BATCH, 7, 7, 1024, 1024, 64, 3, 3, 1, 1, 1, 1)),
]

@tvm.tag_scope(tag=topi.tag.ELEMWISE)
def my_clip(x, a_min, a_max):
"""Unlike topi's current clip, put min and max into two stages."""
const_min = tvm.const(a_min, x.dtype)
const_max = tvm.const(a_max, x.dtype)
x = tvm.compute(x.shape, lambda *i: tvm.min(x(*i), const_max), name="clipA")
x = tvm.compute(x.shape, lambda *i: tvm.max(x(*i), const_min), name="clipB")
return x

def group_conv2d(N, CI, H, W, CO, KH, KW, strides, padding, dilation, group):

CI_G = CI // groups
data_shape = (N//env.BATCH, CI//env.BLOCK_IN, H, W, env.BATCH, env.BLOCK_IN)
kernel_shape = (CO//env.BLOCK_OUT, CI_G//env.BLOCK_IN, KH, KW, env.BLOCK_OUT, env.BLOCK_IN)
bias_shape = (N//env.BATCH, CO//env.BLOCK_OUT, 1, 1, env.BATCH, env.BLOCK_OUT)

data = tvm.placeholder(data_shape, name="data", dtype=env.inp_dtype)
kernel = tvm.placeholder(kernel_shape, name="kernel", dtype=env.wgt_dtype)
bias = tvm.placeholder(bias_shape, name="bias", dtype=env.acc_dtype)

with tvm.target.vta():
res = topi.nn.group_conv2d_nchw(
data,
kernel,
strides,
padding,
dilation,
groups,
env.acc_dtype)
res = topi.right_shift(res, env.WGT_WIDTH)
res = topi.add(res, bias)
res = my_clip(res, 0, (1 << env.OUT_WIDTH - 1) - 1)
res = topi.cast(res, env.out_dtype)

if tvm.target.current_target().device_name == 'vta':
s = topi.generic.schedule_group_conv2d_nchw([res])
else:
s = tvm.create_schedule([res.op])

return s, [data, kernel, bias, res]

if __name__ == '__main__':

# Logging config (for printing tuning log to the screen)
logging.basicConfig()

# Tuning log files
log_file = "%s.group_conv2d.log" % (env.TARGET)
# create tmp log file
tmp_log_file = log_file + ".tmp"
if os.path.exists(log_file):
os.remove(log_file)

# Get tracker info from env
tracker_host = os.environ.get("TVM_TRACKER_HOST", None)
tracker_port = os.environ.get("TVM_TRACKER_PORT", None)
if not tracker_host or not tracker_port:
print("Set your AutoTVM tracker node host and port variables to run the autotuner")
exit()

for idx, (wl_name, wl) in enumerate(mobilenet_wkls):
prefix = "[Task %2d/%2d] " % (idx, len(mobilenet_wkls))

# Read in workload parameters
N = wl.batch
CI = wl.in_filter
H = wl.height
W = wl.width
CO = wl.out_filter
KH = wl.hkernel
KW = wl.wkernel
strides = (wl.hstride, wl.wstride)
padding = (wl.hpad, wl.wpad)
dilation = (1, 1)
groups = wl.groups

# Create task
task = autotvm.task.create(
group_conv2d,
args=(N, CI, H, W, CO, KH, KW, strides, padding, dilation, groups),
target=tvm.target.vta(),
target_host=env.target_host,
template_key='direct')
print(task.config_space)

# Tune
measure_option = autotvm.measure_option(
builder=autotvm.LocalBuilder(),
runner=autotvm.RPCRunner(
env.TARGET, host=tracker_host, port=int(tracker_port),
number=5, timeout=60,
check_correctness=True))

# Run Tuner
tuner = autotvm.tuner.RandomTuner(task)
tuner.tune(
n_trial=len(task.config_space),
early_stopping=None,
measure_option=measure_option,
callbacks=[
autotvm.callback.progress_bar(len(task.config_space), prefix=prefix),
autotvm.callback.log_to_file(tmp_log_file)])

# Pick best records to a cache file
autotvm.record.pick_best(tmp_log_file, log_file)
os.remove(tmp_log_file)
Loading