Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relay][Quantize] Integrate data-aware calibration into quantization #4295

Merged
merged 5 commits into from
Nov 19, 2019
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion python/tvm/relay/quantize/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,4 +21,3 @@
from .quantize import *
from ._partition import register_partition_function
from ._annotate import register_annotate_function
from .kl_divergence import kl_divergence_scale
1 change: 1 addition & 0 deletions python/tvm/relay/quantize/_annotate.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,7 @@ def simulated_quantize_compute(attrs, inputs, out_type, target):
_reg.schedule_injective)
_reg.register_pattern("relay.op.annotation.simulated_quantize",
_reg.OpPattern.ELEMWISE)
_reg.register_schedule("annotation.cast_hint", _reg.schedule_injective)


@register_relay_node
Expand Down
184 changes: 184 additions & 0 deletions python/tvm/relay/quantize/_calibrate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,184 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Find scales for quantization on the dataset."""
from __future__ import absolute_import
import logging
import multiprocessing as mp
import numpy as np
import tvm

from . import _quantize
from . import quantize
from .. import op as _op
from .. import expr as _expr
from .. import module as _module
from .. import analysis as _analysis
from .. import transform as _transform
from .. import build_module as _build_module
from ...contrib import graph_runtime
from .kl_divergence import _find_scale_by_kl


def collect_stats(mod, dataset):
"""Given an annotated graph, create a profile graph to collect profile data from the
calibration dataset. This pass collects simulated_quantize op input into a tuple.
Simulated_quantize ops are rewritten to identity mode. The tuple is the output of the profile
graph.

Parameters
----------
mod: Module
The simulation graph after annotation.

Returns
-------
ret: list of ndarray
List of output data of each layer
"""

logging.info("collecting statistics for calibration...")
vinx13 marked this conversation as resolved.
Show resolved Hide resolved
func = mod['main']
func = _quantize.CreateStatsCollector(func)
target = tvm.target.current_target() or 'llvm'
with _transform.build_config(opt_level=3):
graph, lib, params = _build_module.build(func, target=target)
outputs = []
runtime = graph_runtime.create(graph, lib, tvm.context(target))
runtime.set_input(**params)

num_outputs = runtime.get_num_outputs()
outputs = [[] for i in range(num_outputs)]

for batch in dataset:
runtime.set_input(**batch)
runtime.run()
for i in range(num_outputs):
output = runtime.get_output(i).asnumpy()
outputs[i].append(output)
for i in range(num_outputs):
outputs[i] = np.concatenate(outputs[i]).reshape(-1)
return outputs


def _kl_scale(stats):
with mp.Pool() as pool:
logging.info("finding threshold with kl for calibration...")
scales = list(pool.map(_find_scale_by_kl, stats))

def func(sq_call): # pylint: disable=unused-argument
scale = scales[func.scale_idx]
func.scale_idx += 1
return scale
func.scale_idx = 0

return func


def _set_params(mod, input_scale_func, weight_scale_func):
quantize_op = _op.get("relay.op.annotation.simulated_quantize")
cfg = quantize.current_qconfig()
const_params = {}

def visit_func(expr):
'''visitor function for traverse'''
if isinstance(expr, _expr.Call) and expr.op == quantize_op:
_, ndom_scale, nclip_min, nclip_max = expr.args
attrs = expr.attrs
kind = attrs.kind
nbit = cfg.get_nbit_by_kind(kind)
valid_bit = nbit - attrs.sign

# set scale
if kind == quantize.QAnnotateKind.WEIGHT:
assert isinstance(expr.args[0], _expr.Constant)
scale = weight_scale_func(expr)
else:
scale = input_scale_func(expr)

def _make_const(val):
return _expr.const(val, 'float32')

valid_range = 2**valid_bit
const_params[ndom_scale] = _make_const(scale / valid_range)
const_params[nclip_min] = _make_const(- (valid_range - 1))
const_params[nclip_max] = _make_const((valid_range - 1))

func = mod['main']
_analysis.post_order_visit(func, visit_func)
func = _expr.bind(func, const_params)
return _module.Module.from_expr(func)


# weight scale functions
def _power2_scale(sq_call): # pylint: disable=unused-argument
"""calculate weight scale with nearest mode-2 scale"""
var = sq_call.args[0]
assert isinstance(var, _expr.Constant)
val = np.amax(np.abs(var.data.asnumpy()))
return 2**np.math.ceil(np.math.log(val, 2)) if val > 0 else 1.0


def _max_scale(sq_call):
"""calculate weight scale with maximum absolute value"""
var = sq_call.args[0]
assert isinstance(var, _expr.Constant)
val = np.amax(np.abs(var.data.asnumpy()))
return val


# input scale functions
def _global_scale(sq_call): # pylint: disable=unused-argument
cfg = quantize.current_qconfig()
return cfg.global_scale


def calibrate(dataset=None):
"""The calibrate procedure will try to calculate the content of
dom_scale, nbit, clip_min, clip_max for every `simulated_quantize`
operator.

Parameters
---------
dataset: Optional[Iterable[NDArray]]
The calibration dataset.

Returns
-------
ret: Function
The module pass function.
"""
def wrapped_func(mod, ctx): # pylint: disable=unused-argument
"""make transform.module pass happy"""
cfg = quantize.current_qconfig()

if cfg.calibrate_mode == 'kl':
stats = collect_stats(mod, dataset)
input_scale_func = _kl_scale(stats)
elif cfg.calibrate_mode == 'global_scale':
input_scale_func = _global_scale
else:
raise ValueError("Unknown calibrate mode {}".format(cfg.calibrate_mode))

if cfg.weight_scale == 'max':
weight_scale_func = _max_scale
elif cfg.weight_scale == 'power2':
weight_scale_func = _power2_scale
else:
raise ValueError("Unknown weight scale mode {}".format(cfg.weight_scale))

return _set_params(mod, input_scale_func, weight_scale_func)
return wrapped_func
4 changes: 3 additions & 1 deletion python/tvm/relay/quantize/kl_divergence.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,7 +45,7 @@ def _smooth_distribution(p, eps=0.0001):


# pylint: disable=invalid-name
def kl_divergence_scale(arr, quantized_dtype='int8', num_bins=8001, num_quantized_bins=255):
def _find_scale_by_kl(arr, quantized_dtype='int8', num_bins=8001, num_quantized_bins=255):
"""Given a tensor, find the optimal threshold for quantizing it.
The reference distribution is `q`, and the candidate distribution is `p`.
`q` is a truncated version of the original distribution.
Expand All @@ -54,6 +54,8 @@ def kl_divergence_scale(arr, quantized_dtype='int8', num_bins=8001, num_quantize
http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf
"""
assert isinstance(arr, np.ndarray)
assert stats is not None, "scipy need to be installed for \
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

needs

utilizing kl calibration during quantization"

min_val = np.min(arr)
max_val = np.max(arr)
Expand Down
Loading