Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Codegen][cuda-fp16] fallback to fp32 simulation when cuda arch < sm53 #4268

Merged
merged 8 commits into from
Nov 10, 2019
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions src/codegen/codegen_cuda.cc
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,10 @@ void CodeGenCUDA::AddFunction(LoweredFunc f) {

std::string CodeGenCUDA::Finish() {
if (enable_fp16_) {
static constexpr const char* _cuda_half_t_def =
#include "literal/cuda_half_t.txt"
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

consider still keep it as a header file so we can apply the license header, define a global constant

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@tqchen addressed.

; // NOLINT(*)
decl_stream << "#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 530)\n";
decl_stream << "#include <cuda_fp16.h>\n";
decl_stream << "__device__ half max"
<< "(half a, half b)\n"
Expand All @@ -65,10 +69,16 @@ std::string CodeGenCUDA::Finish() {
decl_stream << "__device__ half operator*"
<< "(__half a, __half b)\n"
<< "{\n return __hmul(a, b);\n}\n";
// otherwise simulate computation via float32
decl_stream << "#else\n";
decl_stream << _cuda_half_t_def;
decl_stream << "#endif\n\n";
}

if (enable_int8_) {
decl_stream << "#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 610)\n";
decl_stream << "#include <sm_61_intrinsics.h>\n";
decl_stream << "#endif\n";
}

if (need_math_constants_h_) {
Expand Down
251 changes: 251 additions & 0 deletions src/codegen/literal/cuda_half_t.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,251 @@
R"(
typedef unsigned short uint16_t;
typedef unsigned char uint8_t;
typedef int int32_t;
typedef unsigned long long uint64_t;
typedef unsigned int uint32_t;

#define TVM_FORCE_INLINE inline __attribute__((always_inline))
#define TVM_XINLINE TVM_FORCE_INLINE __device__ __host__
#define TVM_ALIGNED(x) __attribute__ ((aligned(x)))
#define TVM_HALF_OPERATOR(RTYPE, OP) \
TVM_XINLINE RTYPE operator OP (half a, half b) { \
return RTYPE(float(a) OP float(b)); \
} \
template<typename T> \
TVM_XINLINE RTYPE operator OP (half a, T b) { \
return RTYPE(float(a) OP float(b)); \
} \
template<typename T> \
TVM_XINLINE RTYPE operator OP (T a, half b) { \
return RTYPE(float(a) OP float(b)); \
}

#define TVM_HALF_ASSIGNOP(AOP, OP) \
template<typename T> \
TVM_XINLINE half operator AOP (const T& a) { \
return *this = half(float(*this) OP float(a)); \
} \
template<typename T> \
TVM_XINLINE half operator AOP (const volatile T& a) volatile { \
return *this = half(float(*this) OP float(a)); \
}

class TVM_ALIGNED(2) half {
public:
uint16_t half_;

static TVM_XINLINE half Binary(uint16_t value) {
half res;
res.half_ = value;
return res;
}

TVM_XINLINE half() {}

TVM_XINLINE half(const float& value) { constructor(value); }
TVM_XINLINE explicit half(const double& value) { constructor(value); }
TVM_XINLINE explicit half(const int8_t& value) { constructor(value); }
TVM_XINLINE explicit half(const uint8_t& value) { constructor(value); }
TVM_XINLINE explicit half(const int32_t& value) { constructor(value); }
TVM_XINLINE explicit half(const uint32_t& value) { constructor(value); }
TVM_XINLINE explicit half(const int64_t& value) { constructor(value); }
TVM_XINLINE explicit half(const uint64_t& value) { constructor(value); }

TVM_XINLINE operator float() const { \
return float(half2float(half_)); \
} \
TVM_XINLINE operator float() const volatile { \
return float(half2float(half_)); \
}


TVM_HALF_ASSIGNOP(+=, +)
TVM_HALF_ASSIGNOP(-=, -)
TVM_HALF_ASSIGNOP(*=, *)
TVM_HALF_ASSIGNOP(/=, /)

TVM_XINLINE half operator+() {
return *this;
}

TVM_XINLINE half operator-() {
return half(-float(*this));
}

TVM_XINLINE half operator=(const half& a) {
half_ = a.half_;
return a;
}

template<typename T>
TVM_XINLINE half operator=(const T& a) {
return *this = half(a);
}

TVM_XINLINE half operator=(const half& a) volatile {
half_ = a.half_;
return a;
}

template<typename T>
TVM_XINLINE half operator=(const T& a) volatile {
return *this = half(a);
}

private:
union Bits {
float f;
int32_t si;
uint32_t ui;
};

static int const fp16FractionBits = 10;
static int const fp32FractionBits = 23;
static int32_t const fp32FractionMask = ~(~0u << fp32FractionBits); // == 0x7fffff
static int32_t const fp32HiddenBit = 1 << fp32FractionBits; // == 0x800000
static int const shift = fp32FractionBits - fp16FractionBits; // == 13
static int const shiftSign = 16;
static int32_t const expAdjust = 127 - 15; // exp32-127 = exp16-15, so exp16 = exp32 - (127-15)

static int32_t const infN = 0x7F800000; // flt32 infinity
static int32_t const maxN = 0x477FFFFF; // max flt32 that's a flt16 normal after >> by shift
static int32_t const minN = 0x38800000; // min flt16 normal as a flt32
static int32_t const maxZ = 0x33000000; // max fp32 number that's still rounded to zero in fp16
static int32_t const signN = 0x80000000; // flt32 sign bit

static int32_t const infC = infN >> shift;
static int32_t const nanN = (infC + 1) << shift; // minimum flt16 nan as a flt32
static int32_t const maxC = maxN >> shift;
static int32_t const minC = minN >> shift;
static int32_t const signC = signN >> shiftSign; // flt16 sign bit

static int32_t const mulN = 0x52000000; // (1 << 23) / minN
static int32_t const mulC = 0x33800000; // minN / (1 << (23 - shift))

static int32_t const subC = 0x003FF; // max flt32 subnormal down shifted
static int32_t const norC = 0x00400; // min flt32 normal down shifted

static int32_t const maxD = infC - maxC - 1;
static int32_t const minD = minC - subC - 1;

TVM_XINLINE uint16_t float2half(const float& value) const {
Bits v;
v.f = value;
uint32_t sign = v.si & signN; // grab sign bit
v.si ^= sign; // clear sign bit from v
sign >>= shiftSign; // logical shift sign to fp16 position

if (v.si <= maxZ) {
// Handle eventual zeros here to ensure
// vshift will not exceed 32 below.
v.ui = 0;
} else if (v.si < minN) {
// Handle denorms
uint32_t exp32 = v.ui >> fp32FractionBits;
int32_t exp16 = exp32 - expAdjust;
// If exp16 == 0 (just into the denorm range), then significant should be shifted right 1.
// Smaller (so negative) exp16 values should result in greater right shifts.
uint32_t vshift = 1 - exp16;
uint32_t significand = fp32HiddenBit | (v.ui & fp32FractionMask);
v.ui = significand >> vshift;
} else if (v.si <= maxN) {
// Handle norms
v.ui -= expAdjust << fp32FractionBits;
} else if (v.si <= infN) {
v.si = infN;
} else if (v.si < nanN) {
v.si = nanN;
}

v.ui >>= shift;
return sign | (v.ui & 0x7fff);
}

// Same as above routine, except for addition of volatile keyword
TVM_XINLINE uint16_t float2half(
const volatile float& value) const volatile {
Bits v;
v.f = value;
uint32_t sign = v.si & signN; // grab sign bit
v.si ^= sign; // clear sign bit from v
sign >>= shiftSign; // logical shift sign to fp16 position

if (v.si <= maxZ) {
// Handle eventual zeros here to ensure
// vshift will not exceed 32 below.
v.ui = 0;
} else if (v.si < minN) {
// Handle denorms
uint32_t exp32 = v.ui >> fp32FractionBits;
int32_t exp16 = exp32 - expAdjust;
// If exp16 == 0 (just into the denorm range), then significant should be shifted right 1.
// Smaller (so negative) exp16 values should result in greater right shifts.
uint32_t vshift = 1 - exp16;
uint32_t significand = fp32HiddenBit | (v.ui & fp32FractionMask);
v.ui = significand >> vshift;
} else if (v.si <= maxN) {
// Handle norms
v.ui -= expAdjust << fp32FractionBits;
} else if (v.si <= infN) {
v.si = infN;
} else if (v.si < nanN) {
v.si = nanN;
}

v.ui >>= shift;
return sign | (v.ui & 0x7fff);
}

TVM_XINLINE float half2float(const uint16_t& value) const {
Bits v;
v.ui = value;
int32_t sign = v.si & signC;
v.si ^= sign;
sign <<= shiftSign;
v.si ^= ((v.si + minD) ^ v.si) & -(v.si > subC);
v.si ^= ((v.si + maxD) ^ v.si) & -(v.si > maxC);
Bits s;
s.si = mulC;
s.f *= v.si;
int32_t mask = -(norC > v.si);
v.si <<= shift;
v.si ^= (s.si ^ v.si) & mask;
v.si |= sign;
return v.f;
}

TVM_XINLINE float half2float(
const volatile uint16_t& value) const volatile {
Bits v;
v.ui = value;
int32_t sign = v.si & signC;
v.si ^= sign;
sign <<= shiftSign;
v.si ^= ((v.si + minD) ^ v.si) & -(v.si > subC);
v.si ^= ((v.si + maxD) ^ v.si) & -(v.si > maxC);
Bits s;
s.si = mulC;
s.f *= v.si;
int32_t mask = -(norC > v.si);
v.si <<= shift;
v.si ^= (s.si ^ v.si) & mask;
v.si |= sign;
return v.f;
}

template<typename T>
TVM_XINLINE void constructor(const T& value) {
half_ = float2half(float(value));
}
};

TVM_HALF_OPERATOR(half, +)
TVM_HALF_OPERATOR(half, -)
TVM_HALF_OPERATOR(half, *)
TVM_HALF_OPERATOR(half, /)
TVM_HALF_OPERATOR(bool, >)
TVM_HALF_OPERATOR(bool, <)
TVM_HALF_OPERATOR(bool, >=)
TVM_HALF_OPERATOR(bool, <=)
)"