Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relay] Add grads #3857

Merged
merged 2 commits into from
Sep 4, 2019
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
79 changes: 72 additions & 7 deletions python/tvm/relay/op/_tensor_grad.py
Original file line number Diff line number Diff line change
@@ -17,16 +17,25 @@
#pylint: disable=invalid-name, unused-argument
"""Backend compiler related feature registration"""
from __future__ import absolute_import
from topi.util import get_const_tuple

from topi.nn.util import get_pad_tuple
from ..expr import const, Tuple, TupleGetItem
from topi.util import get_const_tuple

from ..expr import Tuple, TupleGetItem, const
from . import nn as _nn
from .op import register_gradient
from .reduce import sum as _sum
from .transform import collapse_sum_like, broadcast_to_like, where, transpose, reshape, tile, \
strided_slice
from .tensor import exp, negative, power, less, cos, sin
from .tensor import zeros_like, ones_like
from . import nn as _nn
from .tensor import cos, exp, less, negative, ones_like, power, sin, zeros_like
from .transform import (
broadcast_to_like,
collapse_sum_like,
reshape,
reshape_like,
strided_slice,
tile,
transpose,
where,
)


@register_gradient("log")
@@ -250,3 +259,59 @@ def conv2d_grad(orig, grad):
end=[None, None, filter_h, filter_w])

return [backward_data, backward_weight]


@register_gradient("nn.softmax")
def softmax_grad(orig, grad):
"""Gradient of softmax"""
return [(grad - _sum(grad * orig, orig.attrs.axis, True)) * orig]


@register_gradient("nn.bias_add")
def bias_grad(orig, grad):
"""Returns grad"""
data, bias = orig.args
return [collapse_sum_like(grad, data),
collapse_sum_like(grad, bias)]


@register_gradient("nn.dense")
def dense_grad(orig, grad):
"""Returns [grad' @ weight, data @ grad']"""
data, weight = orig.args
return [collapse_sum_like(transpose(grad) * weight, data),
collapse_sum_like(data * transpose(grad), weight)]


@register_gradient("nn.batch_flatten")
def batch_flatten_grad(orig, grad):
"""Returns grad reshaped to data dims"""
data = orig.args[0]
return [reshape_like(grad, data)]


@register_gradient("transpose")
def transpose_grad(orig, grad):
"""Returns grad transposed over the complement of original transpose axes"""
orig_axes = orig.attrs.axes
if orig_axes:
dims = len(orig_axes)
new_axes = [0] * dims
for i in range(dims):
new_axes[int(orig_axes[i])] = i
else:
new_axes = None
return [transpose(grad, axes=new_axes)]


@register_gradient("negative")
def negative_grad(orig, grad):
"""Returns -grad"""
return [-grad]


@register_gradient("sum")
def sum_grad(orig, grad):
"""Returns grad broadcasted to data dims"""
data = orig.args[0]
return [broadcast_to_like(grad, data)]
19 changes: 18 additions & 1 deletion tests/python/relay/test_op_grad_level1.py
Original file line number Diff line number Diff line change
@@ -15,10 +15,12 @@
# specific language governing permissions and limitations
# under the License.
import numpy as np

import tvm
from tvm import relay
from tvm.relay.testing import check_grad, ctx_list, run_infer_type
from tvm.relay.transform import gradient
from tvm.relay.testing import ctx_list, run_infer_type


def sigmoid(x):
one = np.ones_like(x)
@@ -30,6 +32,7 @@ def relu(x):
np.maximum(x_copy, 0, x_copy)
return x_copy


def test_unary_op():
def check_single_op(opfunc, ref):
shape = (10, 4)
@@ -93,6 +96,20 @@ def check_binary_op(opfunc, ref):
check_binary_op(opfunc, ref)


def test_softmax_grad():
data = relay.var("data", relay.TensorType((1, 16), "float64"))
fwd_func = relay.Function([data], relay.nn.softmax(data))
check_grad(fwd_func)


def test_bias_add_grad():
data = relay.var("data", relay.TensorType((1, 16), "float32"))
bias = relay.var("bias", relay.TensorType((16,), "float32"))
fwd_func = relay.Function([data, bias], relay.nn.bias_add(data, bias))
check_grad(fwd_func)


if __name__ == "__main__":
test_unary_op()
test_binary_op()
test_bias_add_grad()
31 changes: 28 additions & 3 deletions tests/python/relay/test_op_grad_level2.py
Original file line number Diff line number Diff line change
@@ -15,13 +15,13 @@
# specific language governing permissions and limitations
# under the License.
import numpy as np
import tvm

import topi
import topi.testing
import tvm
from tvm import relay
from tvm.relay.testing import check_grad, ctx_list, run_infer_type
from tvm.relay.transform import gradient
from tvm.relay.testing import ctx_list, check_grad
from tvm.relay.testing import run_infer_type


def verify_max_pool2d_grad(x_shape, pool_size, strides, padding, ceil_mode):
@@ -129,7 +129,32 @@ def test_conv2d_grad():
verify_conv2d_grad((1, 4, 16, 16), (16, 4, 3, 3), [1, 1], [1, 1], [1, 1], mode='first_order')


def verify_dense_grad(d_shape, w_shape):
data = relay.var("data", relay.TensorType(d_shape, "float32"))
weight = relay.var("weight", relay.TensorType(w_shape, "float32"))
fwd_func = relay.Function([data, weight], relay.nn.dense(data, weight))
check_grad(fwd_func)


def test_dense_grad():
verify_dense_grad((1, 8), (16, 8))
verify_dense_grad((1, 4), (3, 4))


def verify_batch_flatten_grad(d_shape):
data = relay.var("data", relay.TensorType(d_shape, "float32"))
fwd_func = relay.Function([data], relay.nn.batch_flatten(data))
check_grad(fwd_func)


def test_batch_flatten_grad():
verify_batch_flatten_grad((1, 2, 3, 4))
verify_batch_flatten_grad((1, 8))


if __name__ == "__main__":
test_max_pool2d_grad()
test_avg_pool2d_grad()
test_conv2d_grad()
test_dense_grad()
test_batch_flatten_grad()
23 changes: 22 additions & 1 deletion tests/python/relay/test_op_grad_level3.py
Original file line number Diff line number Diff line change
@@ -15,10 +15,12 @@
# specific language governing permissions and limitations
# under the License.
import numpy as np

import tvm
from tvm import relay
from tvm.relay.testing import check_grad, ctx_list, run_infer_type
from tvm.relay.transform import gradient
from tvm.relay.testing import ctx_list, run_infer_type


def test_clip():
ref = (lambda x: np.where(x > 10.0, np.zeros_like(x),
@@ -38,5 +40,24 @@ def test_clip():
np.testing.assert_allclose(op_grad.asnumpy(), ref_grad, rtol=0.01)


def verify_transpose_grad(d_shape, axes=None):
data = relay.var("data", relay.TensorType(d_shape, "float32"))
fwd_func = relay.Function([data], relay.transpose(data, axes=axes))
check_grad(fwd_func)


def test_transpose_grad():
verify_transpose_grad((1, 2, 3, 4))
verify_transpose_grad((1, 2, 3, 4), axes=(0, 2, 3, 1))


def test_negative_grad():
data = relay.var("data", relay.TensorType((10, 4), "float32"))
fwd_func = relay.Function([data], relay.negative(data))
check_grad(fwd_func)


if __name__ == "__main__":
test_clip()
test_transpose_grad()
test_negative_grad()
35 changes: 35 additions & 0 deletions tests/python/relay/test_op_grad_level4.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from tvm import relay
from tvm.relay.testing import check_grad


def verify_sum_grad(d_shape, axis=None, keepdims=False, exclude=False):
data = relay.var("data", relay.TensorType(d_shape, "float32"))
fwd_func = relay.Function([data], relay.sum(data, axis=axis, keepdims=keepdims, exclude=exclude))
check_grad(fwd_func)


def test_sum_grad():
verify_sum_grad((4, 2))
verify_sum_grad((4, 2), axis=-1, keepdims=True)
verify_sum_grad((4, 2, 1), axis=(1, 2), exclude=True)



if __name__ == "__main__":
test_sum_grad()