Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add the acc16 intrinsic support #3081

Merged
merged 4 commits into from
May 16, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
90 changes: 90 additions & 0 deletions tests/python/contrib/test_gemm_acc16.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=import-self, invalid-name, unused-argument, too-many-lines, len-as-condition
import tvm
import numpy as np
from topi.x86.tensor_intrin import dot_16x1x16_int8_int8_int16


def benchmark_fc_int8_acc16():
m = 128
n = 128
k = 128

X = tvm.placeholder((m, k), name='X', dtype="uint8")
W = tvm.placeholder((n, k), name='W', dtype="int8")

peak = 512/16*2*2*2
gops_per_mm = 2*n*m*k
print("Peak {} Gops/s \n".format(peak))

def verify(target="llvm -mcpu=skylake-avx512"):
if not tvm.module.enabled(target):
print("skip because %s is not enabled..." % target)
return

ctx = tvm.context(target, 0)
X = tvm.placeholder((m, k), name='X', dtype="uint8")
W = tvm.placeholder((n, k), name='W', dtype="int8")
pc = dot_16x1x16_int8_int8_int16()
ak = tvm.reduce_axis((0, k), name='k')

packedW = tvm.placeholder((n/128, 128*(k/2), 2), name='packedW', dtype="int8")
t_fc = tvm.compute((m, n), lambda i, j: tvm.sum(X[i, ak].astype("int16") * packedW[j/128, (ak/2)*128+j%128, ak%2].astype("int16"), axis=ak), name="F")

t_sch = tvm.create_schedule(t_fc.op)
a_x, a_y = t_fc.op.axis
a_k, = t_fc.op.reduce_axis

a_yo, a_yi = t_sch[t_fc].split(a_y, factor=128)
a_ko, a_ki = t_sch[t_fc].split(a_k, factor=2)

a_xo, a_xi = t_sch[t_fc].split(a_x, factor=128)
a_koo, a_koi = t_sch[t_fc].split(a_ko, factor=32)
t_sch[t_fc].reorder(a_yo, a_xo, a_koo, a_xi, a_koi, a_yi, a_ki)

t_sch[t_fc].tensorize(a_yi, pc)
# print(tvm.lower(t_sch, [X, packedW, t_fc], simple_mode=True))
t_func = tvm.build(t_sch, [X, packedW, t_fc], target, name="intrinsic")
t_evaluator = t_func.time_evaluator(t_func.entry_name, ctx, number=10)

# generate the plain data
a_ = np.random.uniform(1, 10, size=(m, k)).astype("uint8")
b_ = np.random.uniform(1, 10, size=(n, k)).astype("int8")

packW = np.random.uniform(1, 10, size=(n/128, 128*(k/2), 2)).astype("int8")
# This occurs in pre_compute stage
for r_idx in range(n/128):
for s_idx in range(128*(k/2)):
for t_idx in range(2):
packW[r_idx][s_idx][t_idx] = b_[r_idx*128+s_idx%128][s_idx/128*2+t_idx]

x = tvm.nd.array(a_, ctx)
w = tvm.nd.array(packW, ctx)
y = tvm.nd.array(np.zeros((m, n), dtype="int16"), ctx)

result = t_evaluator(x, w, y)
gops_per_sec = gops_per_mm/result.mean/1e9
tvm.testing.assert_allclose(
y.asnumpy(), np.dot(a_, b_.T), rtol=1e-5)
print('Tensorization: running time: {:.3f} ms, {:.2f} Gops/s, effiency: {:.2f}.'.format(result.mean*1000, gops_per_sec, gops_per_sec/peak))
t_func.export_library("gemm_tensorize.o")

verify()

if __name__ == "__main__":
benchmark_fc_int8_acc16()
79 changes: 79 additions & 0 deletions topi/python/topi/x86/tensor_intrin.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,3 +98,82 @@ def _instr(index):

with tvm.build_config(offset_factor=1, partition_const_loop=True):
return tvm.decl_tensor_intrin(C.op, _intrin_func, binds={data:a_buffer, kernel:b_buffer})


def dot_16x1x16_int8_int8_int16():
"""
Int8 dot product by every 2 elements using AVX2 Skylake instructions.
This function takes two arrays of int8 datatype -- data[2] and
kernel[4][32][2] -- and computes a dot product of data[2] with every
2 elements of kernels, resulting in output[4][32] of int16 datatype.
The pseudo code is as follows.
.. code-block:: c
void dot_16x1x16_int8_int8_int16(int8 data[2], int8 kernel[32*4][2],
int16 output[32*4]){
for (int i = 0; i< 4; i++){
for (int j = 0; j < 32; j++){
out[i][i] = 0;
for (int k = 0; k < 2; k++){
out[i][j][k] += data[k] * kernel[i][j][k]
}
}
}
}
Physically, the kernel array sits in four AVX512 vector registers and
the data[2] is broadcasted to another AVX512 vector register. This
function returns a TensorIntrin that can be used to tensorize
a schedule.
Returns
-------
intrin : TensorIntrin
The Skylake int8 TensorIntrin that can be used in tensorizing schedule
"""

num_int8_elements = 2 # 2 int8 elements in int32
data = tvm.placeholder((num_int8_elements,), dtype='uint8', name='data')
kernel = tvm.placeholder((128, num_int8_elements), dtype='int8', name='kernel')
k = tvm.reduce_axis((0, num_int8_elements), name='k')
C = tvm.compute((128, ),
lambda i: tvm.sum(data[k].astype('int16') *
kernel[i, k].astype('int16'),
axis=k),
name="C")

a_buffer = tvm.decl_buffer(data.shape, dtype='uint8', name="a_buffer",
offset_factor=1,
strides=[1])
b_buffer = tvm.decl_buffer(kernel.shape, dtype='int8', name="b_buffer",
offset_factor=1)
# strides=[tvm.var('ldw'), 1, 1])

def _intrin_func(ins, outs):
def _instr(index):
ib = tvm.ir_builder.create()
if index == 1:
for i in range(4):
ib.emit(outs[0].vstore([i*32], tvm.const(0, 'int16x32')))
return ib.get()

a_int8 = ins[0].vload([0], "uint8x2")
re_int16 = tvm.call_pure_intrin('int16', 'reinterpret', a_int8)
vec_ai16 = re_int16.astype('int16x32')
vec_a = tvm.call_pure_intrin('int8x64', 'reinterpret', vec_ai16)

for i in range(4):
vec_b = ins[1].vload([i*32, 0], "int8x64")
pair_reduction = tvm.call_llvm_intrin('int16x32',
'llvm.x86.avx512.pmaddubs.w.512',
tvm.const(0, 'uint32'),
vec_a, vec_b)
if index == 0:
ib.emit(outs[0].vstore([i*32], pair_reduction))
else:
ib.emit(outs[0].vstore([i*32], pair_reduction + outs[0].vload([i*32],
'int16x32')))
return ib.get()

# body, reset, update
return _instr(0), _instr(1), _instr(2)

with tvm.build_config(offset_factor=1, partition_const_loop=True):
return tvm.decl_tensor_intrin(C.op, _intrin_func, binds={data:a_buffer, kernel:b_buffer})