-
Notifications
You must be signed in to change notification settings - Fork 3.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[DOC] Add Android Tutorial #2977
Merged
+364
−3
Merged
Changes from all commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
328cacd
fix APP_STL for latest android ndk
tkat0 e958975
add vulkan sdk for tutorial
tkat0 de26d69
add android tutorial
tkat0 a439dcc
fix of invalid input layer name
tkat0 073f2a2
Merge branch 'master' into android-tutorial
tkat0 1f908a9
update relay build opt_level 1 -> 3
tkat0 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,342 @@ | ||
""" | ||
.. _tutorial-deploy-model-on-android: | ||
|
||
Deploy the Pretrained Model on Android | ||
======================================= | ||
**Author**: `Tomohiro Kato <https://tkat0.github.io/>`_ | ||
|
||
This is an example of using Relay to compile a keras model and deploy it on Android device. | ||
""" | ||
|
||
import os | ||
import numpy as np | ||
from PIL import Image | ||
import keras | ||
from keras.applications.mobilenet_v2 import MobileNetV2 | ||
import tvm | ||
import tvm.relay as relay | ||
from tvm import rpc | ||
from tvm.contrib import util, ndk, graph_runtime as runtime | ||
from tvm.contrib.download import download_testdata | ||
|
||
|
||
###################################################################### | ||
# Setup Environment | ||
# -------------------- | ||
# Since there are many required packages for Android, it is recommended to use the official Docker Image. | ||
# | ||
# First, to build and run Docker Image, we can run the following command. | ||
# | ||
# .. code-block:: bash | ||
# | ||
# git clone --recursive https://github.com/dmlc/tvm | ||
# cd tvm | ||
# docker build -t tvm.demo_android -f docker/Dockerfile.demo_android ./docker | ||
# docker run --pid=host -h tvm -v $PWD:/workspace \ | ||
# -w /workspace -p 9190:9190 --name tvm -it tvm.demo_android bash | ||
# | ||
# You are now inside the container. The cloned tvm directory is mounted on /workspace. | ||
# At this time, mount the 9190 port used by RPC described later. | ||
# | ||
# .. note:: | ||
# | ||
# Please execute the following steps in the container. | ||
# We can execute :code:`docker exec -it tvm bash` to open a new terminal in the container. | ||
# | ||
# Next we build the TVM. | ||
# | ||
# .. code-block:: bash | ||
# | ||
# mkdir build | ||
# cd build | ||
# cmake -DUSE_LLVM=llvm-config-6.0 \ | ||
# -DUSE_RPC=ON \ | ||
# -DUSE_SORT=ON \ | ||
# -DUSE_VULKAN=ON \ | ||
# -DUSE_GRAPH_RUNTIME=ON \ | ||
# .. | ||
# make -j10 | ||
# | ||
# After building tvm successfully, Please set PYTHONPATH. | ||
# | ||
# .. code-block:: bash | ||
# | ||
# echo 'export PYTHONPATH=/workspace/python:/workspacem/topi/python:/workspace/nnvm/python/:/workspace/vta/python:${PYTHONPATH}' >> ~/.bashrc | ||
# source ~/.bashrc | ||
|
||
################################################################# | ||
# Start RPC Tracker | ||
# ----------------- | ||
# TVM uses RPC session to communicate with Android device. | ||
# | ||
# To start an RPC tracker, run this command in the container. The tracker is | ||
# required during the whole tuning process, so we need to open a new terminal for | ||
# this command: | ||
# | ||
# .. code-block:: bash | ||
# | ||
# python -m tvm.exec.rpc_tracker --host=0.0.0.0 --port=9190 | ||
# | ||
# The expected output is | ||
# | ||
# .. code-block:: bash | ||
# | ||
# INFO:RPCTracker:bind to 0.0.0.0:9190 | ||
|
||
################################################################# | ||
# Register Android device to RPC Tracker | ||
# --------------------------------------- | ||
# Now we can register our Android device to the tracker. | ||
# | ||
# Follow this `readme page <https://github.com/dmlc/tvm/tree/master/apps/android_rpc>`_ to | ||
# install tvm rpc apk on the android device. | ||
# | ||
# Here is an example of config.mk. I enabled OpenCL and Vulkan. | ||
# | ||
# | ||
# .. code-block:: bash | ||
# | ||
# APP_ABI = arm64-v8a | ||
# | ||
# APP_PLATFORM = android-24 | ||
# | ||
# # whether enable OpenCL during compile | ||
# USE_OPENCL = 1 | ||
# | ||
# # whether to enable Vulkan during compile | ||
# USE_VULKAN = 1 | ||
# | ||
# ifeq ($(USE_VULKAN), 1) | ||
# # Statically linking vulkan requires API Level 24 or higher | ||
# APP_PLATFORM = android-24 | ||
# endif | ||
# | ||
# # the additional include headers you want to add, e.g., SDK_PATH/adrenosdk/Development/Inc | ||
# ADD_C_INCLUDES += /work/adrenosdk-linux-5_0/Development/Inc | ||
# # download from https://github.com/KhronosGroup/OpenCL-Headers | ||
# ADD_C_INCLUDES += /workspace/3rdparty/OpenCL-Headers/ | ||
# | ||
# # the additional link libs you want to add, e.g., ANDROID_LIB_PATH/libOpenCL.so | ||
# ADD_LDLIBS = /workspace/pull-from-android-device/libOpenCL.so | ||
# | ||
# .. note:: | ||
# | ||
# At this time, don't forget to `create a standalone toolchain <https://github.com/dmlc/tvm/tree/master/apps/android_rpc#architecture-and-android-standalone-toolchain>`_ . | ||
# | ||
# for example | ||
# | ||
# .. code-block:: bash | ||
# | ||
# /opt/android-sdk-linux/ndk-bundle/build/tools/make-standalone-toolchain.sh \ | ||
# --platform=android-24 --use-llvm --arch=arm64 --install-dir=/opt/android-toolchain-arm64 | ||
# export TVM_NDK_CC=/opt/android-toolchain-arm64/bin/aarch64-linux-android-g++ | ||
# | ||
# Next, start the Android application and enter the IP address and port of RPC Tracker. | ||
# Then you have already registered your device. | ||
# | ||
# After registering devices, we can confirm it by querying rpc_tracker | ||
# | ||
# .. code-block:: bash | ||
# | ||
# python -m tvm.exec.query_rpc_tracker --host=0.0.0.0 --port=9190 | ||
# | ||
# For example, if we have 1 Android device. | ||
# the output can be | ||
# | ||
# .. code-block:: bash | ||
# | ||
# Queue Status | ||
# ---------------------------------- | ||
# key total free pending | ||
# ---------------------------------- | ||
# android 1 1 0 | ||
# ---------------------------------- | ||
# | ||
# To confirm that you can communicate with Android, we can run following test script. | ||
# If you use OpenCL and Vulkan, please set :code:`test_opencl` and :code:`test_vulkan` in the script. | ||
# | ||
# .. code-block:: bash | ||
# | ||
# export TVM_TRACKER_HOST=0.0.0.0 | ||
# export TVM_TRACKER_PORT=9190 | ||
# | ||
# .. code-block:: bash | ||
# | ||
# cd /workspace/apps/android_rpc | ||
# python tests/android_rpc_test.py | ||
# | ||
|
||
###################################################################### | ||
# Load pretrained keras model | ||
# ---------------------------- | ||
# We load a pretrained MobileNetV2(alpha=0.5) classification model provided by keras. | ||
keras.backend.clear_session() # Destroys the current TF graph and creates a new one. | ||
weights_url = ''.join(['https://github.com/JonathanCMitchell/', | ||
'mobilenet_v2_keras/releases/download/v1.1/', | ||
'mobilenet_v2_weights_tf_dim_ordering_tf_kernels_0.5_224.h5']) | ||
weights_file = 'mobilenet_v2_weights.h5' | ||
weights_path = download_testdata(weights_url, weights_file, module='keras') | ||
keras_mobilenet_v2 = MobileNetV2(alpha=0.5, include_top=True, weights=None, | ||
input_shape=(224, 224, 3), classes=1000) | ||
keras_mobilenet_v2.load_weights(weights_path) | ||
|
||
###################################################################### | ||
# In order to test our model, here we download an image of cat and | ||
# transform its format. | ||
img_url = 'https://github.com/dmlc/mxnet.js/blob/master/data/cat.png?raw=true' | ||
img_name = 'cat.png' | ||
img_path = download_testdata(img_url, img_name, module='data') | ||
image = Image.open(img_path).resize((224, 224)) | ||
dtype = 'float32' | ||
|
||
def transform_image(image): | ||
image = np.array(image) - np.array([123., 117., 104.]) | ||
image /= np.array([58.395, 57.12, 57.375]) | ||
image = image.transpose((2, 0, 1)) | ||
image = image[np.newaxis, :] | ||
return image | ||
|
||
x = transform_image(image) | ||
|
||
###################################################################### | ||
# synset is used to transform the label from number of ImageNet class to | ||
# the word human can understand. | ||
synset_url = ''.join(['https://gist.githubusercontent.com/zhreshold/', | ||
'4d0b62f3d01426887599d4f7ede23ee5/raw/', | ||
'596b27d23537e5a1b5751d2b0481ef172f58b539/', | ||
'imagenet1000_clsid_to_human.txt']) | ||
synset_name = 'imagenet1000_clsid_to_human.txt' | ||
synset_path = download_testdata(synset_url, synset_name, module='data') | ||
with open(synset_path) as f: | ||
synset = eval(f.read()) | ||
|
||
|
||
###################################################################### | ||
# Compile the model with relay | ||
# --------------------------------------------- | ||
# If we run the example on our x86 server for demonstration, we can simply | ||
# set it as :code:`llvm`. If running it on the Android device, we need to | ||
# specify its instruction set. Set :code:`local_demo` to False if you want | ||
# to run this tutorial with a real device. | ||
|
||
local_demo = True | ||
|
||
# by default on CPU target will execute. | ||
# select 'cpu', 'opencl' and 'vulkan' | ||
test_target = 'cpu' | ||
|
||
# Change target configuration. | ||
# Run `adb shell cat /proc/cpuinfo` to find the arch. | ||
arch = 'arm64' | ||
target = 'llvm -target=%s-linux-android' % arch | ||
target_host = None | ||
|
||
if local_demo: | ||
target_host = None | ||
target = 'llvm' | ||
elif test_target == 'opencl': | ||
target_host = target | ||
target = 'opencl' | ||
elif test_target == 'vulkan': | ||
target_host = target | ||
target = 'vulkan' | ||
|
||
input_name = 'input_1' | ||
shape_dict = {input_name: x.shape} | ||
func, params = relay.frontend.from_keras(keras_mobilenet_v2, shape_dict) | ||
|
||
with relay.build_config(opt_level=3): | ||
graph, lib, params = relay.build(func, target=target, | ||
target_host=target_host, params=params) | ||
|
||
# After `relay.build`, you will get three return values: graph, | ||
# library and the new parameter, since we do some optimization that will | ||
# change the parameters but keep the result of model as the same. | ||
|
||
# Save the library at local temporary directory. | ||
tmp = util.tempdir() | ||
lib_fname = tmp.relpath('net.so') | ||
fcompile = ndk.create_shared if not local_demo else None | ||
lib.export_library(lib_fname, fcompile) | ||
|
||
###################################################################### | ||
# Deploy the Model Remotely by RPC | ||
# --------------------------------------------- | ||
# With RPC, you can deploy the model remotely from your host machine | ||
# to the remote android device. | ||
|
||
tracker_host = os.environ.get('TVM_TRACKER_HOST', '0.0.0.0') | ||
tracker_port = int(os.environ.get('TVM_TRACKER_PORT', 9190)) | ||
key = 'android' | ||
|
||
if local_demo: | ||
remote = rpc.LocalSession() | ||
else: | ||
tracker = rpc.connect_tracker(tracker_host, tracker_port) | ||
# When running a heavy model, we should increase the `session_timeout` | ||
remote = tracker.request(key, priority=0, | ||
session_timeout=60) | ||
|
||
if local_demo: | ||
ctx = remote.cpu(0) | ||
elif test_target == 'opencl': | ||
ctx = remote.cl(0) | ||
elif test_target == 'vulkan': | ||
ctx = remote.vulkan(0) | ||
else: | ||
ctx = remote.cpu(0) | ||
|
||
# upload the library to remote device and load it | ||
remote.upload(lib_fname) | ||
rlib = remote.load_module('net.so') | ||
|
||
# create the remote runtime module | ||
module = runtime.create(graph, rlib, ctx) | ||
|
||
###################################################################### | ||
# Execute on TVM | ||
# --------------------------------------------- | ||
|
||
# set parameter (upload params to the remote device. This may take a while) | ||
module.set_input(**params) | ||
# set input data | ||
module.set_input(input_name, tvm.nd.array(x.astype(dtype))) | ||
# run | ||
module.run() | ||
# get output | ||
out = module.get_output(0) | ||
|
||
# get top1 result | ||
top1 = np.argmax(out.asnumpy()) | ||
print('TVM prediction top-1: {}'.format(synset[top1])) | ||
|
||
print('Evaluate inference time cost...') | ||
ftimer = module.module.time_evaluator('run', ctx, number=1, repeat=10) | ||
prof_res = np.array(ftimer().results) * 1000 # convert to millisecond | ||
print('Mean inference time (std dev): %.2f ms (%.2f ms)' % (np.mean(prof_res), | ||
np.std(prof_res))) | ||
|
||
###################################################################### | ||
# Sample Output | ||
# --------------------------------------------- | ||
# The following is the result of 'cpu', 'opencl' and 'vulkan' using Adreno 530 on Snapdragon 820 | ||
# | ||
# Although we can run on a GPU, it is slower than CPU. | ||
# To speed up, we need to write and optimize the schedule according to the GPU architecture. | ||
# | ||
# .. code-block:: bash | ||
# | ||
# # cpu | ||
# TVM prediction top-1: tiger cat | ||
# Evaluate inference time cost... | ||
# Mean inference time (std dev): 37.92 ms (19.67 ms) | ||
# | ||
# # opencl | ||
# TVM prediction top-1: tiger cat | ||
# Evaluate inference time cost... | ||
# Mean inference time (std dev): 419.83 ms (7.49 ms) | ||
# | ||
# # vulkan | ||
# TVM prediction top-1: tiger cat | ||
# Evaluate inference time cost... | ||
# Mean inference time (std dev): 465.80 ms (4.52 ms) |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can you confirm if Vulkan works on your device? What device are you targeting?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
My device is Xiaomi Mi 5. It has Snapdragon 820 / Adreno 530 and supports Vulkan.
I found the same device report. https://vulkan.gpuinfo.org/displayreport.php?id=3653