Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relay] Port param dict save/load from NNVM #2620

Merged
merged 7 commits into from
Feb 27, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion python/tvm/api.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,7 +136,7 @@ def load_json(json_str):


def save_json(node):
"""Load tvm object as json string.
"""Save tvm object as json string.

Parameters
----------
Expand Down
5 changes: 5 additions & 0 deletions python/tvm/relay/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
from . import prelude
from . import parser
from . import debug
from . import param_dict

# Root operators
from .op import Op
Expand Down Expand Up @@ -85,3 +86,7 @@

# Parser
fromtext = parser.fromtext

# Param Serialization
save_param_dict = param_dict.save_param_dict
load_param_dict = param_dict.load_param_dict
60 changes: 60 additions & 0 deletions python/tvm/relay/param_dict.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,60 @@
# pylint: disable=invalid-name
"""Helper utility to save parameter dicts."""
import tvm

_save_param_dict = tvm.get_global_func("tvm.relay._save_param_dict")
_load_param_dict = tvm.get_global_func("tvm.relay._load_param_dict")

def save_param_dict(params):
"""Save parameter dictionary to binary bytes.

The result binary bytes can be loaded by the
GraphModule with API "load_params".

Parameters
----------
params : dict of str to NDArray
The parameter dictionary.

Returns
-------
param_bytes: bytearray
Serialized parameters.

Examples
--------
.. code-block:: python

# compile and save the modules to file.
graph, lib, params = tvm.relay.build(func, target=target, params=params)
module = graph_runtime.create(graph, lib, tvm.gpu(0))
# save the parameters as byte array
param_bytes = tvm.relay.save_param_dict(params)
# We can serialize the param_bytes and load it back later.
# Pass in byte array to module to directly set parameters
module.load_params(param_bytes)
"""
args = []
for k, v in params.items():
args.append(k)
args.append(tvm.nd.array(v))
return _save_param_dict(*args)


def load_param_dict(param_bytes):
"""Load parameter dictionary to binary bytes.

Parameters
----------
param_bytes: bytearray
Serialized parameters.

Returns
-------
params : dict of str to NDArray
The parameter dictionary.
"""
if isinstance(param_bytes, (bytes, str)):
param_bytes = bytearray(param_bytes)
load_arr = _load_param_dict(param_bytes)
return {v.name : v.array for v in load_arr}
5 changes: 5 additions & 0 deletions src/relay/backend/interpreter.cc
Original file line number Diff line number Diff line change
Expand Up @@ -578,5 +578,10 @@ TVM_REGISTER_API("relay.backend.CreateInterpreter")
.set_body([](TVMArgs args, TVMRetValue* ret) {
*ret = CreateInterpreter(args[0], args[1], args[2]);
});

TVM_REGISTER_NODE_TYPE(ClosureNode);
TVM_REGISTER_NODE_TYPE(TupleValueNode);
TVM_REGISTER_NODE_TYPE(TensorValueNode);

} // namespace relay
} // namespace tvm
87 changes: 87 additions & 0 deletions src/relay/backend/param_dict.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
/*!
* Copyright (c) 2019 by Contributors
* \file param_dict.cc
* \brief Implementation and registration of parameter dictionary
* serializing/deserializing functions.
*/
#include "param_dict.h"

#include <dmlc/memory_io.h>

#include <string>
#include <vector>

namespace tvm {
namespace relay {

using namespace runtime;

TVM_REGISTER_GLOBAL("tvm.relay._save_param_dict")
.set_body([](TVMArgs args, TVMRetValue *rv) {
CHECK_EQ(args.size() % 2, 0u);
// `args` is in the form "key, value, key, value, ..."
size_t num_params = args.size() / 2;
std::vector<std::string> names;
names.reserve(num_params);
std::vector<DLTensor*> arrays;
arrays.reserve(num_params);
for (size_t i = 0; i < num_params * 2; i += 2) {
names.emplace_back(args[i].operator std::string());
arrays.emplace_back(args[i + 1].operator DLTensor*());
}
std::string bytes;
dmlc::MemoryStringStream strm(&bytes);
dmlc::Stream* fo = &strm;
uint64_t header = kTVMNDArrayListMagic, reserved = 0;
fo->Write(header);
fo->Write(reserved);
fo->Write(names);
{
uint64_t sz = static_cast<uint64_t>(arrays.size());
fo->Write(sz);
for (size_t i = 0; i < sz; ++i) {
tvm::runtime::SaveDLTensor(fo, arrays[i]);
}
}
TVMByteArray arr;
arr.data = bytes.c_str();
arr.size = bytes.length();
*rv = arr;
});

TVM_REGISTER_GLOBAL("tvm.relay._load_param_dict")
.set_body([](TVMArgs args, TVMRetValue *rv) {
std::string bytes = args[0];
std::vector<std::string> names;
dmlc::MemoryStringStream memstrm(&bytes);
dmlc::Stream* strm = &memstrm;
uint64_t header, reserved;
CHECK(strm->Read(&header))
<< "Invalid parameters file format";
CHECK(header == kTVMNDArrayListMagic)
<< "Invalid parameters file format";
CHECK(strm->Read(&reserved))
<< "Invalid parameters file format";
CHECK(strm->Read(&names))
<< "Invalid parameters file format";
uint64_t sz;
strm->Read(&sz, sizeof(sz));
size_t size = static_cast<size_t>(sz);
CHECK(size == names.size())
<< "Invalid parameters file format";
tvm::Array<NamedNDArray> ret;
for (size_t i = 0; i < size; ++i) {
tvm::runtime::NDArray temp;
temp.Load(strm);
auto n = tvm::make_node<NamedNDArrayNode>();
n->name = std::move(names[i]);
n->array = temp;
ret.push_back(NamedNDArray(n));
}
*rv = ret;
});

TVM_REGISTER_NODE_TYPE(NamedNDArrayNode);

} // namespace relay
} // namespace tvm
43 changes: 43 additions & 0 deletions src/relay/backend/param_dict.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
/*!
* Copyright (c) 2019 by Contributors
* \file param_dict.h
* \brief Definitions for serializing and deserializing parameter dictionaries.
*/
#ifndef TVM_RELAY_BACKEND_PARAM_DICT_H_
#define TVM_RELAY_BACKEND_PARAM_DICT_H_

#include <tvm/node/node.h>
#include <tvm/packed_func_ext.h>
#include <tvm/runtime/ndarray.h>
#include <tvm/runtime/packed_func.h>

#include <string>

namespace tvm {
namespace relay {

/*! \brief Magic number for NDArray list file */
constexpr uint64_t kTVMNDArrayListMagic = 0xF7E58D4F05049CB7;

/*!
* \brief Wrapper node for naming `NDArray`s.
*/
struct NamedNDArrayNode : public ::tvm::Node {
std::string name;
tvm::runtime::NDArray array;

void VisitAttrs(tvm::AttrVisitor* v) final {
v->Visit("name", &name);
v->Visit("array", &array);
}

static constexpr const char* _type_key = "NamedNDArray";
TVM_DECLARE_NODE_TYPE_INFO(NamedNDArrayNode, Node);
};

TVM_DEFINE_NODE_REF(NamedNDArray, NamedNDArrayNode);

} // namespace relay
} // namespace tvm

#endif // TVM_RELAY_BACKEND_PARAM_DICT_H_
78 changes: 78 additions & 0 deletions tests/python/relay/test_param_dict.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
import os
import numpy as np
import tvm
import json
import base64
from tvm._ffi.base import py_str
from tvm.relay.op import add
from tvm import relay
from tvm import rpc
from tvm.contrib import util, graph_runtime


def test_save_load():
x = np.ones((10, 2)).astype("float32")
y = np.ones((1, 2, 3)).astype("float32")
params = {"x": x, "y": y}
param_bytes = relay.save_param_dict(params)
assert isinstance(param_bytes, bytearray)
param2 = relay.load_param_dict(param_bytes)
assert len(param2) == 2
np.testing.assert_equal(param2["x"].asnumpy(), x)
np.testing.assert_equal(param2["y"].asnumpy(), y)


def test_ndarray_reflection():
# Make two `NDArrayWrapper`s that point to the same underlying array.
np_array = np.random.uniform(size=(10, 2)).astype("float32")
tvm_array = tvm.nd.array(np_array)
param_dict = {'x': tvm_array, 'y': tvm_array}
assert param_dict['x'].same_as(param_dict['y'])
# Serialize then deserialize `param_dict`.
deser_param_dict = relay.load_param_dict(relay.save_param_dict(param_dict))
# Make sure the data matches the original data and `x` and `y` contain the same data.
np.testing.assert_equal(deser_param_dict['x'].asnumpy(), tvm_array.asnumpy())
# Make sure `x` and `y` contain the same data.
np.testing.assert_equal(deser_param_dict['x'].asnumpy(), deser_param_dict['y'].asnumpy())


def test_bigendian_rpc_param():
"""Test big endian rpc when there is a PowerPC RPC server available"""
host = os.environ.get("TVM_POWERPC_TEST_HOST", None)
port = os.environ.get("TVM_POWERPC_TEST_PORT", 9090)
if host is None:
return

def verify_graph_runtime(remote, target, shape, dtype):
x = relay.var('x')
y = relay.const(1)
z = relay.add(x, y)
func = relay.Function([x], z)

x_in = np.ones(shape).astype(dtype)
params = {'x': x_in}
graph, lib, params = relay.build(func, target=target, params=params)

temp = util.tempdir()
path_dso = temp.relpath("dev_lib.o")
lib.save(path_dso)
remote.upload(path_dso)
lib = remote.load_module("dev_lib.o")
ctx = remote.cpu(0)
mod = graph_runtime.create(graph, lib, ctx)
mod.load_params(relay.save_param_dict(params))
mod.run()
out = mod.get_output(0, tvm.nd.empty(shape, dtype=dtype, ctx=ctx))
tvm.testing.assert_allclose(x_in + 1, out.asnumpy())

print("Test RPC connection to PowerPC...")
remote = rpc.connect(host, port)
target = "llvm -mtriple=powerpc-linux-gnu"
for dtype in ["float32", "float64", "int32", "int8"]:
verify_graph_runtime(remote, target, (10,), dtype)


if __name__ == "__main__":
test_save_load()
test_ndarray_reflection()
test_bigendian_rpc_param()