Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Relay transform for rolling a known pattern into batch_matmul #14210

Merged
merged 1 commit into from
Mar 9, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
163 changes: 163 additions & 0 deletions python/tvm/contrib/hexagon/transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,9 @@
import functools as ft

import tvm
from tvm import relay
from tvm.relay.dataflow_pattern import DFPatternCallback, rewrite, wildcard
from tvm.relay.dataflow_pattern import is_constant, is_op, is_tuple
from ..._ffi.registry import register_func

### VTCM
Expand Down Expand Up @@ -148,3 +151,163 @@ def transform(func, mod, ctx):

def ir_lower_vtcm_pass():
return [(3, ir_lower_vtcm())]


class qdistilbert_rewrite(DFPatternCallback):
"""
A callback to replace the below pattern:
Pattern:
%35 = strided_slice(%34, begin=[0, 0, 0], end=[1, 128, 64], strides=[1, 1, 1], axes=None);
%44 = reshape(%35, newshape=[-1, 64]);
<snip>
%42 = strided_slice(%41, begin=[0, 0, 0], end=[1, 64, 128], strides=[1, 1, 1], axes=None);
%43 = reshape(%42, newshape=[64, 128]);
%45 = transpose(%43, axes=[1, 0]);
<snip>
%46 = qnn.dense(%44, %45, 13, 1, 0.0541715f, 0.0489368f, units=None, out_dtype="int32");
%47 = qnn.requantize(%46, 0.00265098f, 0, 0.728874f, -14, axis=1, out_dtype="int8");
<snip>
%125 = expand_dims(%47, axis=0) /* ty=Tensor[(1, 128, 128), int8] */;
< The above pattern repeats 12 times, which is the batch size >

%137 = (%125, %126, %127, %128, %129, %130, %131, %132, %133, %134, %135, %136);
%138 = concatenate(%137);

"""

def __init__(self):
super(qdistilbert_rewrite, self).__init__()
self.A = wildcard() # Tensor A
self.B = wildcard() # Tensor B
self.batch = 12 # Number of time pattern repeats or Batch size

self.d = [] # List of dense quantization parameters
self.q = [] # List of requantize parameters
L = [] # List of patterns

z = tvm.tir.IntImm("int64", 0)
s1 = tvm.tir.IntImm("int64", 1)

for i in range(self.batch):
x = tvm.tir.IntImm("int64", i)

self.d.append([is_constant(), is_constant(), is_constant(), is_constant()])
self.q.append([is_constant(), is_constant(), is_constant(), is_constant()])

pat_a = is_op("strided_slice")(self.A).has_attr(
{"begin": [x, z, z], "strides": [s1, s1, s1]}
)
pat_a = is_op("reshape")(pat_a)

pat_b = is_op("strided_slice")(self.B).has_attr(
{"begin": [x, z, z], "strides": [s1, s1, s1]}
)
pat_b = is_op("reshape")(pat_b)
pat_b = is_op("transpose")(pat_b)

pat = is_op("qnn.dense")(
pat_a, pat_b, self.d[i][0], self.d[i][1], self.d[i][2], self.d[i][3]
)
pat = is_op("qnn.requantize")(
pat, self.q[i][0], self.q[i][1], self.q[i][2], self.q[i][3]
)
pat = is_op("expand_dims")(pat)
L.append(pat)

T = is_tuple(L)
self.pattern = is_op("concatenate")(T)

def check_quant_params(self, node_map):
"""checking if dense and requant params are the same across patterns"""
r = self.batch
x1 = [node_map[self.d[0][i]][0].data.numpy().item() for i in range(4)]
x2 = [node_map[self.q[0][i]][0].data.numpy().item() for i in range(4)]
for i in range(1, r):
for j in range(4):
y1 = node_map[self.d[i][j]][0].data.numpy().item()
y2 = node_map[self.q[i][j]][0].data.numpy().item()
if x1[j] != y1 or x2[j] != y2:
return False
return True

def callback(self, pre, post, node_map):
A = node_map[self.A][0]
B = node_map[self.B][0]

if not self.check_quant_params(node_map):
return post

[a0, a1, a2] = [0, 0, 0] # Tensor A shape
[b0, b1, b2] = [0, 0, 0] # Tensor B shape

if isinstance(A, relay.expr.Call) and isinstance(B, relay.expr.Call):
if A.checked_type is None or B.checked_type is None:
# Need infer pass to be run before this pass
return post
if len(A.checked_type.shape) == 3 and len(B.checked_type.shape) == 3:
[a0, a1, a2] = A.checked_type.shape
[b0, b1, b2] = B.checked_type.shape

if isinstance(A, relay.Var) and isinstance(B, relay.Var):
if len(A.type_annotation.shape) == 3 and len(B.type_annotation.shape) == 3:
[a0, a1, a2] = A.type_annotation.shape
[b0, b1, b2] = B.type_annotation.shape

# Check if the batch size is same as expected tensor size
if (a0 != self.batch) or (b0 != self.batch):
return post

for i in range(self.batch):
# end=(x, pa1, pa2) attribute of strided_slice for Tensor A
pa1 = pre.args[0][i].args[0].args[0].args[0].args[0].attrs.end[1].value
pa2 = pre.args[0][i].args[0].args[0].args[0].args[0].attrs.end[2].value

# end=(x, pb1, pb2) attribute of strided_slice for Tensor B
pb1 = pre.args[0][i].args[0].args[0].args[1].args[0].args[0].attrs.end[1].value
pb2 = pre.args[0][i].args[0].args[0].args[1].args[0].args[0].attrs.end[2].value

if a1 != pa1 or a2 != pa2 or b1 != pb1 or b2 != pb2:
return post

d = [node_map[self.d[0][i]][0] for i in range(4)]
q = [node_map[self.q[0][i]][0] for i in range(4)]

out = relay.op.transpose(B, axes=[0, 2, 1])
out = relay.qnn.op.batch_matmul(A, out, d[0], d[1], d[2], d[3], out_dtype="int32")
out = relay.qnn.op.requantize(out, q[0], q[1], q[2], q[3], out_dtype="int8")
return out


def rewrite_qdistilbert(mod):
"""Rewrite the Quantized Distilbert to reduce computational complexity."""
mod["main"] = rewrite(qdistilbert_rewrite(), mod["main"])
return mod


class remove_empty_pad_callback(DFPatternCallback):
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sorry the class name should be CamelCase. I'll merge this, but when you send a new PR in the future, please fix them.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thank you @masahi for your quick review and help. I will keep the above changes in mind, when I create a new PR.

"""
A callback to remove empty pad op from the below pattern:
Pattern:
%0 = cast(0f, dtype="float16");
%1 = nn.pad(%inp, %0, pad_width=[[0i64, 0i64], [0i64, 0i64]]);
nn.matmul(%1, %inp2, units=None)

"""

def __init__(self):
super(remove_empty_pad_callback, self).__init__()
self.A = wildcard()
self.B = wildcard()
self.a = is_op("nn.pad")(self.A, wildcard()).has_attr({"pad_width": ((0, 0), (0, 0))})
self.pattern = is_op("nn.matmul")(self.a, self.B)

def callback(self, pre, post, node_map):
A = node_map[self.A][0]
B = node_map[self.B][0]
return relay.nn.matmul(A, B)


def remove_empty_pad(mod):
"""Remove the empty pad operator."""
mod["main"] = rewrite(remove_empty_pad_callback(), mod["main"])
return mod
120 changes: 120 additions & 0 deletions tests/python/contrib/test_hexagon/test_relay_transforms.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=unused-wildcard-import, invalid-name

"""
Test hexagon relay transforms
"""
import tvm
from tvm import relay
from tvm.contrib.hexagon.transform import rewrite_qdistilbert, remove_empty_pad
from tvm import testing


def test_rewrite_qdistilbert():
"""Test case for rewrite_qdistilbert"""
A = relay.var("A", shape=(12, 128, 64), dtype="int8")
B = relay.var("B", shape=(12, 64, 128), dtype="int8")

z = tvm.tir.IntImm("int64", 0)
s1 = tvm.tir.IntImm("int64", 1)
tx = tvm.tir.IntImm("int64", 128)
ty = tvm.tir.IntImm("int64", 64)
expand_dims = []
for i in range(12):
d1 = relay.const(13, dtype="int32")
d2 = relay.const(1, dtype="int32")
d3 = relay.const(0.0541715, dtype="float32")
d4 = relay.const(0.0489368, dtype="float32")

q1 = relay.const(0.00265098, dtype="float32")
q2 = relay.const(0, dtype="int32")
q3 = relay.const(0.728874, dtype="float32")
q4 = relay.const(-14, dtype="int32")

x = tvm.tir.IntImm("int64", i)
y = tvm.tir.IntImm("int64", i + 1)

SA = relay.op.strided_slice(
A, begin=[x, z, z], end=[y, tx, ty], strides=[s1, s1, s1], axes=None
)
RA = relay.op.reshape(SA, [128, 64])
SB = relay.op.strided_slice(
B, begin=[x, z, z], end=[y, ty, tx], strides=[s1, s1, s1], axes=None
)
RB = relay.op.reshape(SB, [64, 128])
TB = relay.op.transpose(RB, [1, 0])
dense = relay.qnn.op.dense(RA, TB, d1, d2, d3, d4, units=None, out_dtype="int32")
requantize = relay.qnn.op.requantize(dense, q1, q2, q3, q4)
expand_dims.append(relay.op.expand_dims(requantize, axis=0))

t = relay.expr.Tuple(expand_dims)
graph = relay.op.concatenate(t, axis=0)

func = relay.Function(relay.analysis.free_vars(graph), graph)
mod = tvm.IRModule.from_expr(func)
mod = rewrite_qdistilbert(mod)

d1 = relay.const(13, dtype="int32")
d2 = relay.const(1, dtype="int32")
d3 = relay.const(0.0541715, dtype="float32")
d4 = relay.const(0.0489368, dtype="float32")

q1 = relay.const(0.00265098, dtype="float32")
q2 = relay.const(0, dtype="int32")
q3 = relay.const(0.728874, dtype="float32")
q4 = relay.const(-14, dtype="int32")

ref = relay.op.transpose(B, [0, 2, 1])
ref = relay.qnn.op.batch_matmul(A, ref, d1, d2, d3, d4, out_dtype="int32")
ref = relay.qnn.op.requantize(ref, q1, q2, q3, q4, out_dtype="int8")
ref_func = relay.Function(relay.analysis.free_vars(ref), ref)
ref_mod = tvm.IRModule.from_expr(ref_func)

assert tvm.ir.structural_equal(mod["main"], ref_mod["main"])

# If the pattern does not match, should return the original.
func = relay.expr.Tuple(expand_dims) # omitting concatenate
mod = tvm.IRModule.from_expr(func)
out_mod = rewrite_qdistilbert(mod) # out does not return ref_mod but the original mod

assert tvm.ir.structural_equal(mod["main"], out_mod["main"])


def test_remove_empty_pad():
"""Test case for remove_empty_pad"""
A = relay.var("A", shape=(32, 32), dtype="float16")
B = relay.var("B", shape=(32, 32), dtype="float16")

p0 = relay.cast(relay.const(0, dtype="float32"), dtype="float16")
p1 = relay.nn.pad(A, pad_value=p0, pad_width=((0, 0), (0, 0)))
graph = relay.nn.matmul(p1, B)

func = relay.Function(relay.analysis.free_vars(graph), graph)
mod = tvm.IRModule.from_expr(func)

mod = remove_empty_pad(mod)

ref = relay.nn.matmul(A, B)
ref_func = relay.Function(relay.analysis.free_vars(ref), ref)
ref_mod = tvm.IRModule.from_expr(ref_func)

assert tvm.ir.structural_equal(mod["main"], ref_mod["main"])


if __name__ == "__main__":
testing.main()