Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[NNVM][CONVOLUTION] Group convolution generalization for NHWC #1232

Merged
merged 4 commits into from
Jun 24, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
135 changes: 127 additions & 8 deletions nnvm/python/nnvm/frontend/tensorflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,8 @@ def __call__(self, inputs, attrs, *args):
self._ignores.append('_input_shapes')
self._ignores.append('T')
self._ignores.append('use_cudnn_on_gpu')
self._ignores.append('_node_name')
self._ignores.append('is_training')
return AttrConvert(self._op_name, self._transforms, self._excludes,
self._disables, self._ignores, self._extras,
self._custom_check)(inputs, attrs, *args)
Expand Down Expand Up @@ -230,6 +232,85 @@ def _impl(inputs, attr, params):
custom_check=_dimension_constraint())(inputs, attr)
return _impl

def _depthwise_conv():
def _impl(inputs, attr, params):
attr['data_format'] = attr['data_format'].decode("utf-8")
input_shapes = attr['_input_shapes'][inputs[0]]

# Extract kernel shape from params
conv_param_weights = params[inputs[1].list_output_names()[0]]

if attr['data_format'] == 'NHWC':
kernel_h, kernel_w, _, depth_mult = conv_param_weights.shape
attr['kernel_shape'] = (conv_param_weights.shape[0], conv_param_weights.shape[1])
attr['channels'] = input_shapes[0][3] * depth_mult
if 'dilations' in attr:
attr['dilations'] = (attr['dilations'][0], attr['dilations'][1])
elif attr['data_format'] == 'NCHW':
depth_mult, _, kernel_h, kernel_w = conv_param_weights.shape
attr['kernel_shape'] = (conv_param_weights.shape[2], conv_param_weights.shape[3])
attr['channels'] = input_shapes[0][1] * depth_mult
if 'dilations' in attr:
attr['dilations'] = (attr['dilations'][2], attr['dilations'][3])
else:
raise TypeError("Unsupported data format type : {}".format(attr['data_format']))

# Fix strides
attr['strides'] = (attr['strides'][1], attr['strides'][2])

# Fix groups
attr['groups'] = attr['channels']

# Fix padding
attr['padding'] = attr['padding'].decode("utf-8")

if attr['padding'] == 'VALID':
attr['padding'] = [0, 0]
elif attr['padding'] == 'SAME':
stride_h, stride_w = attr['strides']
kernel_h, kernel_w = attr['kernel_shape']
if attr['data_format'] == 'NHWC':
in_h = input_shapes[0][1]
in_w = input_shapes[0][2]
else:
in_h = input_shapes[0][2]
in_w = input_shapes[0][3]

pad_v = _get_pad_pair(in_h, kernel_h, stride_h)
pad_h = _get_pad_pair(in_w, kernel_w, stride_w)

if attr['data_format'] == 'NHWC':
inputs[0] = _sym.pad(data=inputs[0],
pad_width=((0, 0),
(pad_v[0], pad_v[1]),
(pad_h[0], pad_h[1]),
(0, 0)))
else:
inputs[0] = _sym.pad(data=inputs[0],
pad_width=((0, 0),
(0, 0),
(pad_v[0], pad_v[1]),
(pad_h[0], pad_h[1])))

attr['padding'] = [0, 0]

else:
raise TypeError("Unsupported padding type : {}".format(attr['padding']))

if 'kernel_layout' not in attr:
attr['kernel_layout'] = 'HWOI' if attr['data_format'] == 'NHWC' else 'OIHW'

return AttrCvt(
op_name=_dimension_picker('conv'),
transforms={
'kernel_shape': 'kernel_size',
'data_format': 'layout',
'dilations': ('dilation', (0, 0)),
'group': ('groups', 1)},
extras={'use_bias': len(inputs) == 3},
custom_check=_dimension_constraint())(inputs, attr)
return _impl

def _decode_image():
def _impl(inputs, attr, params):
# Image decode wrapper: Expecting user to feed decoded input to next layer drop this layer.
Expand Down Expand Up @@ -358,9 +439,27 @@ def _impl(inputs, attr, params):
op_name='batch_norm',
transforms={'scale_after_normalization':'scale', 'variance_epsilon':'epsilon'},
extras={'axis': 3}, # Fix axis
ignores=['data_format'],
disables=['momentum'])(new_inputs, attr)
return _impl

def _relu6():
def _impl(inputs, attr, params):
return _sym.clip(inputs[0], a_min=0, a_max=6)
return _impl

def _shape():
def _impl(inputs, attr, params):
input_shapes = attr['_input_shapes'][inputs[0]]

# Fix the -1 dimensions to 1
input_shapes[0] = [1 if x == -1 else x for x in input_shapes[0]]
params[attr['_node_name']] = tvm.nd.array(input_shapes[0])

return _sym.Variable(name=attr['_node_name'],
shape=params[attr['_node_name']].shape)
return _impl

# compatible operators that do NOT require any conversion.
_identity_list = []

Expand Down Expand Up @@ -392,6 +491,10 @@ def _impl(inputs, attr, params):
'Add' : _elemwise('add'),
'Rsqrt' : _rsqrt(),
'Squeeze' : _squeeze(),
'FusedBatchNorm' : _batch_norm(),
'Relu6' : _relu6(),
'DepthwiseConv2dNative' : _depthwise_conv(),
'Shape' : _shape(),
}


Expand Down Expand Up @@ -458,9 +561,13 @@ def from_tensorflow(self, graph):
self._num_input += 1
self._nodes[node.name] = _sym.Variable(name=node.name)

self._output_shapes[node.name] = \
[tensor_util.TensorShapeProtoToList(shape) \
for shape in self._parse_attr(node.attr)['_output_shapes']]
try:
self._output_shapes[node.name] = \
[tensor_util.TensorShapeProtoToList(shape) \
for shape in self._parse_attr(node.attr)['_output_shapes']]
except KeyError:
raise NotImplementedError( \
"Please freeze the graph with add_shapes=True")
elif node.op == "Const":
# Assuming first Const node as Graph Input node
if self._input_node == '':
Expand All @@ -476,17 +583,29 @@ def from_tensorflow(self, graph):
raise NotImplementedError( \
"Const {} couldn't be converted to Param.".format(node.name))

self._output_shapes[node.name] = \
[tensor_util.TensorShapeProtoToList(shape) \
for shape in self._parse_attr(node.attr)['_output_shapes']]
try:
self._output_shapes[node.name] = \
[tensor_util.TensorShapeProtoToList(shape) \
for shape in self._parse_attr(node.attr)['_output_shapes']]
except KeyError:
raise NotImplementedError( \
"Please freeze the graph with add_shapes=True")
else:
attr = self._parse_attr(node.attr)
self._output_shapes[node.name] = \
[tensor_util.TensorShapeProtoToList(shape) for shape in attr['_output_shapes']]
try:
self._output_shapes[node.name] = \
[tensor_util.TensorShapeProtoToList(shape) \
for shape in attr['_output_shapes']]
except KeyError:
raise NotImplementedError( \
"Please freeze the graph with add_shapes=True")

# Pass the parsed shapes instead
attr["_output_shapes"] = self._output_shapes[node.name]

# Pass the node name too in attr
attr["_node_name"] = node.name

try:
inputs = [self._nodes[i] for i in node.input]
input_shapes = {}
Expand Down
20 changes: 18 additions & 2 deletions nnvm/python/nnvm/top/nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,6 +84,7 @@ def compute_conv2d(attrs, inputs, _):
groups = attrs.get_int("groups")
channels = attrs.get_int("channels")
layout = attrs["layout"]
kernel_layout = attrs["kernel_layout"]
assert layout == "NCHW" or layout == "NHWC"
(dilation_h, dilation_w) = dilation
if dilation_h < 1 or dilation_w < 1:
Expand All @@ -97,10 +98,18 @@ def compute_conv2d(attrs, inputs, _):

if groups == 1:
out = topi.nn.conv2d(inputs[0], kernel, strides, padding, layout)
elif groups == get_const_int(inputs[0].shape[1]) and groups == channels:
elif layout == "NCHW" and \
groups == get_const_int(inputs[0].shape[1]) and \
groups == channels:
out = topi.nn.depthwise_conv2d_nchw(inputs[0], kernel, strides, padding)
elif layout == "NHWC" and \
kernel_layout == "HWOI" and \
groups == get_const_int(inputs[0].shape[3]) and \
groups == channels:
out = topi.nn.depthwise_conv2d_nhwc(inputs[0], kernel, strides, padding)
else:
raise ValueError("not support arbitrary group number for now")

if attrs.get_bool("use_bias"):
bias = inputs[2]
expand_axis = 1 if layout == "NCHW" else 0
Expand All @@ -112,13 +121,20 @@ def compute_conv2d(attrs, inputs, _):
def schedule_conv2d(attrs, outs, target):
"""Schedule definition of conv2d"""
groups = attrs.get_int("groups")
channels = attrs.get_int("channels")
layout = attrs["layout"]
kernel_layout = attrs["kernel_layout"]
with tvm.target.create(target):
if groups == 1 and layout == "NCHW":
return topi.generic.schedule_conv2d_nchw(outs)
elif groups == 1 and layout == "NHWC":
return topi.generic.schedule_conv2d_nhwc(outs)
return topi.generic.schedule_depthwise_conv2d_nchw(outs)
elif groups == channels and layout == "NCHW":
return topi.generic.schedule_depthwise_conv2d_nchw(outs)
elif groups == channels and layout == "NHWC" and kernel_layout == "HWOI":
return topi.generic.schedule_depthwise_conv2d_nhwc(outs)
else:
raise ValueError("No compatible schedule")

@reg.register_alter_op_layout("conv2d")
def alter_conv2d_layout(attrs, inputs, tinfos):
Expand Down
3 changes: 2 additions & 1 deletion nnvm/src/top/nn/convolution.cc
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,8 @@ inline bool Conv2DInferShape(const nnvm::NodeAttrs& attrs,
param.kernel_size[1]});

wshape = ConvertLayout(wshape, kOIHW, kernel_layout);
wshape[0] *= param.groups;

wshape[kernel_layout.indexof('O')] *= param.groups;

NNVM_ASSIGN_INPUT_SHAPE(attrs, *in_shape, Conv2DParam::kWeight, wshape);
if (param.use_bias) {
Expand Down
27 changes: 25 additions & 2 deletions nnvm/tests/python/compiler/test_top_level2.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ def test_dilated_conv2d():
np.testing.assert_allclose(out.asnumpy(), c_np, rtol=1e-5)


def test_grouped_conv2d():
def test_grouped_conv2d_nchw():
x = sym.Variable("x")
y = sym.conv2d(x, channels=32, kernel_size=(3,3), groups=32,
name="y", padding=(1,1))
Expand All @@ -80,6 +80,28 @@ def test_grouped_conv2d():
c_np = c_np + bias.asnumpy().reshape(kshape[0], 1, 1)
np.testing.assert_allclose(out.asnumpy(), c_np, rtol=1e-5)

def test_grouped_conv2d_nhwc():
x = sym.Variable("x")
y = sym.conv2d(x, channels=32, kernel_size=(3,3), groups=32,
name="y", padding=(1,1), layout="NHWC", kernel_layout ='HWOI')
dtype = "float32"
dshape = (1, 18, 18, 32)
kshape = (3, 3, 32, 1)
oshape = (1, 18, 18, 32)
shape_dict = {"x": dshape}
for target, ctx in ctx_list():
graph, lib, _ = nnvm.compiler.build(y, target, shape_dict)
m = graph_runtime.create(graph, lib, ctx)
data = tvm.nd.array(np.random.uniform(size=dshape).astype(dtype))
kernel = tvm.nd.array(np.random.uniform(size=kshape).astype(dtype))
bias = tvm.nd.array(np.random.uniform(size=kshape[2]).astype(dtype))
m.run(x=data, y_weight=kernel, y_bias=bias)
out = m.get_output(0, tvm.nd.empty(oshape, dtype))
c_np = topi.testing.depthwise_conv2d_python_nhwc(
data.asnumpy(), kernel.asnumpy(), (1,1), 'SAME')
c_np = c_np + bias.asnumpy().reshape(1, 1, kshape[2])
np.testing.assert_allclose(out.asnumpy(), c_np, rtol=1e-5)


def test_conv2d_transpose():
x = sym.Variable("x")
Expand Down Expand Up @@ -269,7 +291,8 @@ def test_resize_bilinear():
if __name__ == "__main__":
test_conv2d()
test_dilated_conv2d()
test_grouped_conv2d()
test_grouped_conv2d_nchw()
test_grouped_conv2d_nhwc()
test_conv2d_transpose()
test_max_pool2d()
test_avg_pool2d()
Expand Down