Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MetaSchedule][M4a] Rewrite-Cooperative-Fetch #10081

Merged
merged 1 commit into from
Jan 29, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions python/tvm/meta_schedule/postproc/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
"""The tvm.meta_schedule.postproc package."""
from .postproc import Postproc, PyPostproc
from .disallow_dynamic_loop import DisallowDynamicLoop
from .rewrite_cooperative_fetch import RewriteCooperativeFetch
from .rewrite_parallel_vectorize_unroll import RewriteParallelVectorizeUnroll
from .rewrite_reduction_block import RewriteReductionBlock
from .rewrite_unbound_block import RewriteUnboundBlock
Expand Down
34 changes: 34 additions & 0 deletions python/tvm/meta_schedule/postproc/rewrite_cooperative_fetch.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""A postprocessor that rewrites the cooperative fetch annotation to actual
vectorized cooperative fetching in loop bindings."""

from tvm._ffi.registry import register_object
from .. import _ffi_api
from .postproc import Postproc


@register_object("meta_schedule.RewriteCooperativeFetch")
class RewriteCooperativeFetch(Postproc):
"""A postprocessor that rewrites the cooperative fetch annotation to actual vectorized
cooperative fetching in loop bindings.
"""

def __init__(self) -> None:
self.__init_handle_by_constructor__(
_ffi_api.PostprocRewriteCooperativeFetch, # type: ignore # pylint: disable=no-member
)
156 changes: 156 additions & 0 deletions src/meta_schedule/postproc/rewrite_cooperative_fetch.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,156 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#include "../utils.h"

namespace tvm {
namespace tir {

/*!
* \brief Parse instruction: sch.bind(..., axis)
* \param sch The schedule
* \param inst The instruction to be parsed
* \param axis The axis name expected
* \return NullOpt if parsing fails; Otherwise, the extent of thread axis
*/
Optional<Integer> ParseThreadBinding(const Schedule& sch, const Instruction& inst, String axis) {
static InstructionKind inst_kind_bind = InstructionKind::Get("Bind");
if (!inst->kind.same_as(inst_kind_bind)) {
return NullOpt;
}
ICHECK_EQ(inst->inputs.size(), 1);
ICHECK_EQ(inst->attrs.size(), 1);
String thread_axis = Downcast<String>(inst->attrs[0]);
if (thread_axis != axis) {
return NullOpt;
}
return Downcast<Integer>(sch->Get(Downcast<LoopRV>(inst->inputs[0]))->extent);
}

/*!
* \brief Parse instruction: sch.annotate(..., attr::meta_schedule_cooperative_fetch)
* \param sch The schedule
* \param inst The instruction to be parsed
* \param vector_lane The number of vector lane in vectorized cooperative fetching
* \return NullOpt if parsing fails; Otherwise, the annotated block
*/
Optional<BlockRV> ParseAnnotate(const Schedule& sch, const Instruction& inst, int* vector_lane) {
static InstructionKind inst_kind_annotate = InstructionKind::Get("Annotate");
if (!inst->kind.same_as(inst_kind_annotate)) {
return NullOpt;
}
ICHECK_EQ(inst->inputs.size(), 2);
ICHECK_EQ(inst->attrs.size(), 1);
String ann_key = Downcast<String>(inst->attrs[0]);
if (ann_key != attr::meta_schedule_cooperative_fetch) {
return NullOpt;
}
*vector_lane = Downcast<Integer>(sch->Get(Downcast<ExprRV>(inst->inputs[1])))->value;
return Downcast<BlockRV>(inst->inputs[0]);
}

} // namespace tir

namespace meta_schedule {

/*!
* \brief Rewrite the cooperative fetch annotation to actual vectorized cooperative fetching
* in loop bindings.
*/
class RewriteCooperativeFetchNode : public PostprocNode {
public:
// Inherited from PostprocNode
void InitializeWithTuneContext(const TuneContext& context) final {}
// Inherited from PostprocNode
bool Apply(const tir::Schedule& sch) final;

void VisitAttrs(tvm::AttrVisitor* v) {}

static constexpr const char* _type_key = "meta_schedule.RewriteCooperativeFetch";
TVM_DECLARE_FINAL_OBJECT_INFO(RewriteCooperativeFetchNode, PostprocNode);
};

bool RewriteCooperativeFetchNode::Apply(const tir::Schedule& sch) {
tir::Trace trace = sch->trace().value();
int thread_extent_x = -1;
int thread_extent_y = -1;
int vector_lane = -1;
std::vector<std::function<void()>> tasks;
for (const tir::Instruction& inst : trace->insts) {
if (Optional<Integer> new_thread_extent = tir::ParseThreadBinding(sch, inst, "threadIdx.x")) {
thread_extent_x = new_thread_extent.value()->value;
} else if (Optional<Integer> new_thread_extent =
tir::ParseThreadBinding(sch, inst, "threadIdx.y")) {
thread_extent_y = new_thread_extent.value()->value;
} else if (Optional<tir::BlockRV> block_rv = tir::ParseAnnotate(sch, inst, &vector_lane)) {
ICHECK_NE(thread_extent_x, -1);
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

is this check necessary here? I am hitting this check with a simple matmul_fp16 example with rules and postprocs like in test_meta_schedule_tune_tir and I wonder if more details about this check can be elaborated here.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

it means threadIdx.x isn't bound in previous instructions, which isn't supposed to happen (and that's why it's an ICHECK instead of CHECK). Could you check the trace->insts and see why threadIdx.x doesn't exist previously

if (vector_lane > 1) {
tasks.push_back([thread_extent_x, thread_extent_y, vector_lane, sch,
block = block_rv.value()]() -> void {
tir::LoopRV fused = sch->GetLoops(block).back();
if (thread_extent_y == -1) {
Array<tir::LoopRV> split = sch->Split(fused, {NullOpt, //
Integer(thread_extent_x), //
Integer(vector_lane)});
sch->Vectorize(split[2]);
sch->Bind(split[1], "threadIdx.x");
} else {
Array<tir::LoopRV> split = sch->Split(fused, {NullOpt, //
Integer(thread_extent_y), //
Integer(thread_extent_x), //
Integer(vector_lane)});
sch->Vectorize(split[3]);
sch->Bind(split[2], "threadIdx.x");
sch->Bind(split[1], "threadIdx.y");
}
});
} else {
tasks.push_back(
[thread_extent_x, thread_extent_y, sch, block = block_rv.value()]() -> void {
tir::LoopRV fused = sch->GetLoops(block).back();
if (thread_extent_y == -1) {
Array<tir::LoopRV> split = sch->Split(fused, {NullOpt, Integer(thread_extent_x)});
sch->Bind(split[1], "threadIdx.x");
} else {
Array<tir::LoopRV> split = sch->Split(fused, {NullOpt, //
Integer(thread_extent_y), //
Integer(thread_extent_x)});
sch->Bind(split[2], "threadIdx.x");
sch->Bind(split[1], "threadIdx.y");
}
});
}
}
}
for (auto&& task : tasks) {
task();
}
return true;
}

Postproc Postproc::RewriteCooperativeFetch() {
ObjectPtr<RewriteCooperativeFetchNode> n = make_object<RewriteCooperativeFetchNode>();
return Postproc(n);
}

TVM_REGISTER_NODE_TYPE(RewriteCooperativeFetchNode);
TVM_REGISTER_GLOBAL("meta_schedule.PostprocRewriteCooperativeFetch")
.set_body_typed(Postproc::RewriteCooperativeFetch);

} // namespace meta_schedule
} // namespace tvm
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=missing-module-docstring,missing-function-docstring,missing-class-docstring

import tvm
from tvm import tir
from tvm.meta_schedule import TuneContext
from tvm.meta_schedule.postproc import RewriteCooperativeFetch
from tvm.meta_schedule.testing import te_workload
from tvm.script import tir as T
from tvm.target import Target
from tvm.te import create_prim_func


def _target() -> Target:
return Target("cuda", host="llvm")


def _create_context(mod, target) -> TuneContext:
ctx = TuneContext(
mod=mod,
target=target,
postprocs=[
RewriteCooperativeFetch(),
],
task_name="test",
)
for rule in ctx.postprocs:
rule.initialize_with_tune_context(ctx)
return ctx


# fmt: off
# pylint: disable=no-member,invalid-name,unused-variable,no-self-argument,line-too-long,chained-comparison,not-callable,too-many-nested-blocks

@tvm.script.ir_module
class AfterRewrite0:
@T.prim_func
def main(var_A: T.handle, var_B: T.handle, var_C: T.handle) -> None:
# function attr dict
T.func_attr({"global_symbol": "main", "tir.noalias": True})
A = T.match_buffer(var_A, [512, 512], dtype="float32")
B = T.match_buffer(var_B, [512, 512], dtype="float32")
C = T.match_buffer(var_C, [512, 512], dtype="float32")
# body
# with T.block("root")
C_local = T.alloc_buffer([512, 512], dtype="float32", scope="local")
A_shared = T.alloc_buffer([512, 512], dtype="float32", scope="shared")
B_shared = T.alloc_buffer([512, 512], dtype="float32", scope="shared")
for i0_0_i1_0_fused in T.thread_binding(0, 16, thread="blockIdx.x"):
for i0_1_i1_1_fused in T.thread_binding(0, 16, thread="vthread.x"):
for i0_2_i1_2_fused in T.thread_binding(0, 8, thread="threadIdx.x"):
for i2_0 in T.serial(0, 1):
for ax0_ax1_fused_0 in T.serial(0, 32768):
for ax0_ax1_fused_1 in T.thread_binding(0, 8, thread="threadIdx.x"):
with T.block("A_shared"):
v0 = T.axis.spatial(512, (ax0_ax1_fused_0 * 8 + ax0_ax1_fused_1) // 512)
v1 = T.axis.spatial(512, (ax0_ax1_fused_0 * 8 + ax0_ax1_fused_1) % 512)
T.reads([A[v0, v1]])
T.writes([A_shared[v0, v1]])
T.block_attr({"meta_schedule.cooperative_fetch":1})
A_shared[v0, v1] = A[v0, v1]
for ax0_ax1_fused_0 in T.serial(0, 1024):
for ax0_ax1_fused_1 in T.thread_binding(0, 8, thread="threadIdx.x"):
for ax0_ax1_fused_2 in T.vectorized(0, 2):
with T.block("B_shared"):
v0 = T.axis.spatial(512, (ax0_ax1_fused_0 * 16 + ax0_ax1_fused_1 * 2 + ax0_ax1_fused_2) // 32)
v1 = T.axis.spatial(512, i0_0_i1_0_fused * 32 + (ax0_ax1_fused_0 * 16 + ax0_ax1_fused_1 * 2 + ax0_ax1_fused_2) % 32)
T.reads([B[v0, v1]])
T.writes([B_shared[v0, v1]])
T.block_attr({"meta_schedule.cooperative_fetch":2})
B_shared[v0, v1] = B[v0, v1]
for i2_1, i0_3, i1_3, i2_2, i0_4, i1_4 in T.grid(16, 2, 2, 32, 16, 2):
with T.block("C"):
i = T.axis.spatial(512, i0_1_i1_1_fused * 32 + i0_3 * 16 + i0_4)
j = T.axis.spatial(512, i0_0_i1_0_fused * 32 + i0_2_i1_2_fused * 4 + i1_3 * 2 + i1_4)
k = T.axis.reduce(512, i2_1 * 32 + i2_2)
T.reads([C_local[i, j], A_shared[i, k], B_shared[k, j]])
T.writes([C_local[i, j]])
with T.init():
C_local[i, j] = T.float32(0)
C_local[i, j] = C_local[i, j] + A_shared[i, k] * B_shared[k, j]
for ax0, ax1 in T.grid(32, 4):
with T.block("C_local"):
v0 = T.axis.spatial(512, i0_1_i1_1_fused * 32 + ax0)
v1 = T.axis.spatial(512, i0_0_i1_0_fused * 32 + i0_2_i1_2_fused * 4 + ax1)
T.reads([C_local[v0, v1]])
T.writes([C[v0, v1]])
C[v0, v1] = C_local[v0, v1]


# pylint: enable=no-member,invalid-name,unused-variable,no-self-argument,line-too-long,chained-comparison,not-callable,too-many-nested-blocks
# fmt: on


def test_rewrite_cooperative_fetch():
mod = create_prim_func(te_workload.matmul(n=512, m=512, k=512))
target = _target()
ctx = _create_context(mod, target)

sch = tir.Schedule(mod, debug_mask="all")
# fmt: off
# pylint: disable=line-too-long,invalid-name
b0 = sch.get_block(name="C", func_name="main")
b1 = sch.cache_write(block=b0, write_buffer_index=0, storage_scope="local")
l2, l3, l4 = sch.get_loops(block=b0)
v5, v6, v7, v8, v9 = sch.sample_perfect_tile(loop=l2, n=5, max_innermost_factor=64, decision=[1, 16, 1, 2, 16])
l10, l11, l12, l13, l14 = sch.split(loop=l2, factors=[v5, v6, v7, v8, v9])
v15, v16, v17, v18, v19 = sch.sample_perfect_tile(loop=l3, n=5, max_innermost_factor=64, decision=[16, 1, 8, 2, 2])
l20, l21, l22, l23, l24 = sch.split(loop=l3, factors=[v15, v16, v17, v18, v19])
v25, v26, v27 = sch.sample_perfect_tile(loop=l4, n=3, max_innermost_factor=64, decision=[1, 16, 32])
l28, l29, l30 = sch.split(loop=l4, factors=[v25, v26, v27])
sch.reorder(l10, l20, l11, l21, l12, l22, l28, l29, l13, l23, l30, l14, l24)
l31 = sch.fuse(l10, l20)
sch.bind(loop=l31, thread_axis="blockIdx.x")
l32 = sch.fuse(l11, l21)
sch.bind(loop=l32, thread_axis="vthread.x")
l33 = sch.fuse(l12, l22)
sch.bind(loop=l33, thread_axis="threadIdx.x")
b34 = sch.cache_read(block=b0, read_buffer_index=1, storage_scope="shared")
sch.compute_at(block=b34, loop=l28, preserve_unit_loops=True)
_, _, _, _, l39, l40 = sch.get_loops(block=b34)
l41 = sch.fuse(l39, l40)
_, v43 = sch.sample_perfect_tile(loop=l41, n=2, max_innermost_factor=4, decision=[262144, 1])
sch.annotate(block_or_loop=b34, ann_key="meta_schedule.cooperative_fetch", ann_val=v43)
b44 = sch.cache_read(block=b0, read_buffer_index=2, storage_scope="shared")
sch.compute_at(block=b44, loop=l28, preserve_unit_loops=True)
_, _, _, _, l49, l50 = sch.get_loops(block=b44)
l51 = sch.fuse(l49, l50)
_, v53 = sch.sample_perfect_tile(loop=l51, n=2, max_innermost_factor=4, decision=[8192, 2])
sch.annotate(block_or_loop=b44, ann_key="meta_schedule.cooperative_fetch", ann_val=v53)
sch.reverse_compute_at(block=b1, loop=l33, preserve_unit_loops=True)
# pylint: enable=line-too-long,invalid-name
# fmt: on
sch.enter_postproc()
assert ctx.postprocs[0].apply(sch)
tvm.ir.assert_structural_equal(sch.mod, AfterRewrite0)


if __name__ == "__main__":
test_rewrite_cooperative_fetch()